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Abstract

A large and growing body of work has documented robust illusions of area perception

in adults. To date, however, there has been surprisingly little in-depth investigation

into children’s area perception, despite the importance of this topic to the study of

quantity perception more broadly (and to the many studies that have been devoted to

studying children’s number perception). Here, in order to understand the interactions

of number and area on quantity perception, we study both dimensions in tandem. This

work is inspired by recent studies showing that human adults estimate area via an

“Additive AreaHeuristic,” whereby the horizontal and vertical dimensions are summed

rather than multiplied. First, we test whether children may rely on this same kind of

heuristic. Indeed, “additive area” explains children’s area judgments better than true,

mathematical area. Second, we show that children’s use of “additive area” biases num-

ber judgments. Finally, to isolate “additive area” from number, we test children’s area

perception in a taskwhere number is held constant across all trials.We find something

surprising: even when there is no overall effect of “additive area” or “mathematical

area,” individual children adopt and stick to specific strategies throughout the task.

In other words, some children appear to rely on “additive area,” while others appear

to rely on true, mathematical area – a pattern of results that may be best explained

by a misunderstanding about the concept of cumulative area. We discuss how these

findings raise both theoretical and practical challenges of studying quantity perception

in young children.
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1 INTRODUCTION

Imagine foraging for berries. Say you come across two different kinds

of berry bushes with berries that vary in shape and volume, but you

are forced to forage from only one bush. Which bush do you choose to

maximize the total quantity of berries? Quantity estimation tasks like

this one are a ubiquitous part of everyday life (say, when selecting veg-

etables in a market, or estimating the size of a crowd), and successfully

solving them would confer an obvious adaptive advantage. But how

exactly dowe solve this sort of quantity estimation task – andhowdoes

this capacity develop?

A largebodyofworkhasemphasizedhumans’ ability to approximate

visual number (Dehaene, 1997; Feigenson et al., 2004; Xu & Spelke,

2000; Xu et al., 2005), an ability that is said to be shared with some of

our closest evolutionary relatives (e.g., Cantlon & Brannon, 2007). Yet,

number is only one dimension of quantity estimation; relatively under-

studied in comparison is area (and/or volume) perception, although in

many contexts this would seem to be themore relevant dimension. For
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example, a foragerwould likely seek themore voluminous sets of berries

rather than the more numerous sets. Surprisingly, though, area is often

seen as little more than a pesky confound in number approximation

tasks (but see Barth, 2008; Brannon et al., 2006; Leibovich & Henik,

2014; Lourenco et al., 2012; Odic et al., 2013).

Herewe investigate twoaspects of areaperception in children. First,

do children, like adults, rely on a particular heuristic to estimate area

in multi-element scenes? Second, do children utilize this heuristic even

when the numerosity of the displays is held constant? Thus, our results

bear not only on the development of area perception in its own right,

but also on the way in which cumulative area influences number per-

ception.

1.1 Area perception in adults

Abody of work dating back over half a century has documented an illu-

sion of area perception: that larger objects appear relatively less large

than they should. This results in underestimates of true (i.e., mathemat-

ical) area. This distortion is traditionally explained by appeal to percep-

tual scaling, whereby area is “scaled down,” such that perceived area

is equal to true area raised to some exponent less than one (Ekman

& Junge, 1961; Stevens & Guirao, 1963; Teghtsoonian, 1965). Despite

providing a good fit to the data, “scaling models” fall short of provid-

ing a meaningful mechanistic account of area perception. It has been

suggested, for example, that these theories are ultimately unfalsifiable

(insofar as they do not commit to exactly how, or to what degree, area

perception is scaled; see Yousif et al., 2020). These scaling models also

fail to explain some instanceswhere two identical objects areperceived

to be different in size, depending on their orientation (as scaling mod-

els should straightforwardly predict that two things equal in area are

perceived as equal; see Carbon, 2016; see also Yousif et al., 2020).

In part to address these limitations in prior models, recent work has

offered a (computationally) simpler explanation: that perceived area is

roughly equal to the sum of the lengths of an object’s horizontal and

vertical axes. Thus, it has been suggested that area perception in adults

relies on an “additive area heuristic” (so named because the visual sys-

tem is ostensibly adding the dimensions of space together rather than

multiplying them; Yousif & Keil, 2019, 2021a).

To understand the “additive area heuristic, consider Figure 1.Which

set of dots has more cumulative area? Most participants indicate that

the left panel has more area, while, in fact, the two are equal (i.e., they

are equal in true, mathematical area). Notably, however, the sum of the

diameters in the left panel is greater than the sum of the diameters in

the right panel – and, here, the sum of the diameters is (proportionally)

equal to the sumof the horizontal and vertical axes. The “additive area”

account predicts that the displays with more “cumulative diameter”

should be perceived as having more cumulative area. This heuristic

results in fairly substantial distortions of perceived area in practice:

Although adults readily discriminate between sets of dots that vary

in “additive area” (while true, mathematical area is held constant),

they completely fail to discriminate between sets of dots that vary in

true, mathematical area (while additive area is held constant) – even

ResearchHighlights

∙ An “Additive-Area Heuristic” explains children’s area judg-

ments better than reliance on true, mathematical area,

consistent with adult work

∙ “Additive area” influences children’s number judgments

∙ In constrained tasks with controlled stimuli, children

adopt specific strategies, complicating the study of area

perception in children

∙ These results raise questions about the relative acuity for

area/number, and the extent to which these dimensions

have been properly isolated in prior studies

in cases where mathematical area differs by as much as 30%. Adults’

inability to discriminate two displays that are equated in additive

area provides strong evidence that additive area is tightly linked with

adults’ impressions of area.

1.2 Area perception in children

Much of our current understanding of number and area perception

stems from developmental work (e.g., Brannon et al., 2006; Clearfield

&Mix, 1999; Lourenco et al., 2012; Odic et al., 2013). However, area is

vastly understudied relative to number. One classic study of area per-

ception with single objects suggests that children use a “length plus

width” rule for purposes of single-object area perception – a rule that

resembles the additive area heuristic (Anderson&Cuneo, 1978). How-

ever, it remains unknown whether this heuristic applies to cumulative

area perception. Some more contemporary studies have studied area

perception directly, but often only as a comparison to number percep-

tion (Brannonet al., 2006; Lourencoet al., 2012;Odic et al., 2013). Little

is known about area perception in the early years of life, especially for

the sorts of stimuli canonically used to assess number perception (i.e.,

arrays of dots).

Understanding howchildren perceive area is of both theoretical and

practical importance. On a theoretical level, understanding how chil-

dren perceive area would speak to visual development more gener-

ally. The term “heuristic” implies a rule, possibly one that is learned

through experience. Thus, children may initially perceive cumulative

area veridically (i.e., by computing mathematical area) and acquire the

AA heuristic that in turn leads to illusory area judgments. On a practi-

cal level, understanding area perception is necessary to guide how we

measure and manipulate area in other studies of quantity perception.

In general, studies of number perception make claims about number

per seby controlling other dimensions. But if areaperception is illusory,

how should we control area perception in number displays?

One possibility is that, like adults, children’s area discriminations

are better explained by appeal to additive area than mathematical

area. This would suggest that this tendency to use an AAH is early
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F IGURE 1 A depiction of the illusion of area, using actual stimuli from the Experiment 1. Here, most participants perceive the left panel as
havingmore cumulative area, but in fact the two are identical. The left panel is perceived asmore because it has more “additive area”

developing. Another possibility is that children are actually better than

adults at approximating true area and do not use a heuristic to estimate

area. If true, this would suggest that the tendency to use an AAH is one

that is derived from experience, perhaps a learned rule that is success-

ful because it provides a “shortcut to the truth.” A final possibility is

that children prefer neither additive area normathematical area – that

they haphazardly, or even strategically, rely on one cue or the other.

There are three reasons why we believe developmental data are

central to this investigation. (1) While adults may rely on an AAH, chil-

dren might not estimate area in the same way; knowing the answer to

this question is critical to understanding one of our most foundational

perceptual abilities (i.e., the ability to approximate how much “stuff” is

out there). (2) Although a vast literature on approximate number has

studied these kinds of estimations before, no study on quantity per-

ceptionhas ever asked the simplest questionof all: do childrenperceive

area veridically? (3) This approachmay shed light on confounds inmany

existing studies, raising both theoretical and practical questions about

how we ought to control visual stimuli in studies like these. For exam-

ple, recent work has shown that number biases children’s area judg-

ments (Tomlinson et al., 2020). Yet a reanalysis of those data account-

ing for additive area suggested this may not be the case. Indeed, when

accounting for additive area, the opposite may be true: area biases

number judgments (Aulet & Lourenco, 2021).

1.3 Current study

In a first experiment, we show that children as young as 4 years do in

fact rely on an AAH. In a design reminiscent of prior work in adults

(e.g., Yousif & Keil, 2019), children can discriminate between stimuli

which differ in additive area but not mathematical area (while the

other dimension is equated). This establishes a ground truth: per-

ceived area is not equal to true area. In a second experiment, we

ask whether this insight may concretely impact studies on approx-

imate number (given that the study of number accounts for most

of the research on this topic). We show that apparent number acu-

ity varies to a large extent depending on whether additive area or

mathematical area is controlled. This finding raises questions about

what “true” acuity is, and whether number is ever perceived indepen-

dently of continuous spatial dimensions. In a final experiment, we test

whether children still discriminate displays based on AA when specif-

ically controlling number (borrowing stimuli from adult work which

used an identical design; Yousif et al., 2020). Here, we show that indi-

vidual children adopt task-specific strategies: some almost exclusively

select stimuli greater in additive area, while others almost exclusively

select stimuli greater in mathematical area. We discuss how children’s

limited understanding of the concept of cumulative area therefore

poses a concrete challenge to the study of area perception early in

development.

We focus on children between the ages of 4 and 7, for three reasons.

First, we purposefully wanted to cast a wide net to see if and when

children begin using an AAH. Second, this age range corresponds to

when children are first encounteringmathematical concepts via formal

schooling – and these mathematical concepts are thought to be intrin-

sically related to quantity estimation (Feigenson et al., 2004; Lourenco

& Bonny, 2017). Finally, this age range roughly corresponds with the

age range studied in the most comprehensive investigation of area

approximation in children to date (Odic et al., 2013).

2 EXPERIMENT 1: DO CHILDREN USE AN
“ADDITIVE-AREA HEURISTIC”?

Do children rely on an AAH to estimate visual area? Here, children

completed a forced-choice area discrimination task. The stimulus pairs

were designed such that they varied either in additive area or mathe-

matical area while the other dimensionwas held constant (reminiscent

of the design from Yousif & Keil, 2019). The number of elements was

allowed to vary freely. If children do use an AAH, wewould expect that

they should be able to discriminate stimuli which vary in additive area
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whenmathematical area is equated but not stimuli which vary inmath-

ematical area while additive area is equated.

2.1 Method

This experimentwasmodeled after a previous studywith adults (Yousif

& Keil, 2019). As such, the stimuli in the current study closely resemble

those from this prior work, though they were adapted to bemore child

friendly. Additional details about the stimuli can be found here: (https:

//osf.io/xygns/).

2.1.1 Participants

One hundred children aged 4–7 participated (25 of 4-year-olds; 25 of

5-year-olds; 25 of 6-year-olds; and 25 of 7-year-olds). Four children

who failed to complete the task were excluded prior to analysis. The

studywas run in a localmuseum. Children completed the task in a quiet

area so that they were not distracted. The same children also com-

pleted Experiment 2 (with a few exceptions; see below), in a counter-

balanced order (i.e., half the participants completed Experiment 1 first;

theotherhalf completedExperiment2 first). All participants consented

prior to participation, and these studies were approved by the IRB at

Yale University.

2.1.2 Materials

All of the stimuliwere generatedvia customsoftwarewritten inPython

with the PsychoPy libraries (Peirce et al., 2019). The aim was to cre-

ate pairs of dot array stimuli that varied in either additive area (AA) or

mathematical area (MA) while the other dimension was held constant

between the two arrays. For each stimulus pair, we randomly gener-

ated an initial set of discs (ranging from 20 to 100 pixels in diameter,

with a buffer of at least 10 pixels between any two discs), then pseudo-

randomly generated a second set of objects based on a given AA ratio

(see Yousif & Keil, 2019 for more information on this process). The ini-

tial set of objects always had 10 discs. For the details of how AA, MA,

and number covaried, see the “Stimulus Details” files on the OSF site

linked earlier. The images depicted in Figure 1 are representative, as

they were actual images used in this experiment.

In this experiment, there were only two constraints: AA and MA.

There were pairs where both AA and MA were equated (to serve as a

baseline), cases where MA varied while AA was controlled, and cases

where AA varied while MA was controlled. While AA was controlled,

area could vary between the two stimuli in either a 1.00, 1.10, 1.20, or

1.30 ratio (and vice versa for AAwhile MAwas controlled). Because of

the pseudo-random nature of stimuli creation and mathematical con-

straints,MAwas never perfectlymatchedwith the stated ratio; it could

vary ±1%. That is, if the MA ratio for a given trial was 1.10, then we

allowed the difference in MA to fluctuate between 1.09 and 1.11. This

decision was arbitrary. We could have fixed theMA ratios and allowed

F IGURE 2 An example display, with dot displays from one of two
practice stimuli that all participants saw. The practice stimuli were
specifically designed to tease apart area and number. For example,
here, orange is clearly greater in number, and blue is clearly greater in
area. The characters were always in the same position, but “jumped”
via a short animation when their side was selected. Different sets of
dots appeared on each trial (unique for each experiment)

the AA ratios to vary slightly instead. Either way, this should not mean-

ingfully impact the design nor the results.

The stimuli were generated such that one set of discs was orange,

and the otherwas blue. The orange set always appeared on the left side

of the screen, and the blue set always appeared on the right side of the

screen (for more information, see Section 2.1.3). The colors were fully

counterbalancedwith other stimulus details.

2.1.3 Procedure

The task itself was administered on a Surface Pro 3 tablet computer

using custom software written in Python. On each trial, participants

saw two spatially separated sets of orange (left) and blue (right) discs.

The discs themselveswere on a grey background in a 400-pixel by 400-

pixel frame. Those two frames were on top of an ocean scene back-

ground. Next to each stimulus was a character: Nemo was next to the

orange discs, and Dory was next to the blue discs (see Figure 2). Chil-

dren were told that Nemo and Dory each had painted some bubbles,

and that we needed to help them figure out who had used more paint.

We showed two practice examples that clearly dissociated area and

number and explicitly communicated that we were asking which had

more area and not which had more number (see Figure 2 for an exam-

ple practice trial). For example, if a child chose a displaywithmore num-

ber in the practice trials, we would say, “Well, if we were to count the

bubbles, we would find that Nemo has more bubbles. But Dory’s bub-

bles take upmore space, so we should pick Dory.”Wewould otherwise

clarify as needed before continuing onto the real trials. Data would be

discarded if a child demonstrated a clear failure to understand the dis-

tinction during the practice (see exclusions, above).

https://osf.io/xygns/
https://osf.io/xygns/
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F IGURE 3 Results of Experiment 1. (a) The propensity to choose “more” (whether AA orMA) on the y-axis, broken down by ratio (see x-axis)
and age (see legend in top-right). (b) The same information, but collapsed across age groups. Dashed gray lines represent chance performance.
Error bars represent± 1 SE. “Additive Area Ratio” (or AA Ratio) indicates trials which varied in AAwhileMAwas held constant; “Mathematical
Area Ratio” (orMARatio) indicates trials which varied inMAwhile AAwas held constant

Children were asked to indicate their answers by saying either

Nemo/Dory or orange/blue – whichever they felt more comfortable

with. We also accepted pointing as an answer, so long as the point-

ing was decisive. If a child took more than a few moments to respond,

we would repeat the question: “Who/which has more: [Nemo/Dory or

orange/blue]?” If a child still did not respond, we would say “Nemo and

Dory really need your help; can you help Nemo and Dory figure out

who has more?” Occasionally, we would also ask “Who has/used more

paint?” Positive reinforcement was provided anytime an answer was

given, but otherwise no feedback was provided. There was also a brief

animation of the selected character bouncing up and down.

Because over half of the trials had no objectively correct answer

(because MA did not vary), we measured accuracy as a propensity to

choose “more”–whether that bemoreAAormoreMA.The sidewith the

“correct” image was counterbalanced such that half the time the left

side had more area and half the time the right side had more area. The

stimuli stayed on the screen until the child indicated a choice and the

experimenter submitted the response. Between each trial, there was a

1000ms ITI. Participants completed 28 trials (7 ratios [trials where AA

varied by 1.10, 1.20, and 1.30 while MA was equated; MA varying by

1.10, 1.20, and 1.30 while AAwas equated; and trials where both were

equated] × 2 sides [left, right] × 2 stimuli [different stimuli with identi-

cal parameters]). Trial order was randomized.

2.2 Results and discussion

The results are shown in Figure 3. As is evident from the figure, average

accuracy was above-chance for discriminations between sets which

varied in AA but not MA. A repeated-measures ANOVA with two

factors (condition: AA vs. MA; ratio: 1.10, 1.20, and 1.30) conducted

on all participants revealed a main effect of condition (F[1,99]= 26.96,

p<0.001, η2=0.21) but not of ratio (F[2,98]=1.84,p=0.16, η2=0.02),

and no interaction between the two (F[2,98]= .48, p= 0.62, η2= 0.01).

Post hoc tests revealed that, overall, children were above-chance

for AA discriminations (M = 0.65, SD = 0.22; t(99) = 6.69, p < 0.001,

d = 0.67) but were slightly below chance for MA discriminations

(M=0.46, SD=0.20; t(99)=2.03,p=0.05,d=0.20).1 Collapsingacross

ratios, childrenwere consistently above-chance for AA discriminations

(4-year-olds: M = 0.58, SD = 0.18; t(99) = 2.06, p = 0.05, d = 0.41;

5-year-olds: M = 0.62, SD = 0.21; t(99) = 2.86, p = 0.009, d = 0.57;

6-year-olds: M = 0.72, SD = 0.18; t(99) = 6.16, p < 0.001, d = 1.23;

7-year-olds: M = 0.68, SD = 0.29; t(99) = 3.14, p = 0.004, d = 0.63)

and were never above chance for MA discriminations (in fact, per-

formance was below chance for every group, but not significantly;

4-year-olds: M = 0.46, SD = 0.15; t(99) = 1.24, p = 0.23, d = 0.25;

5-year-olds: M = 0.45, SD = 0.21; t(99) = 1.21, p = 0.24,

d = 0.24; 6-year-olds: M = 0.45, SD = 0.21; t(99) = 1.25, p = 0.22,

d = 0.25; 7-year-olds: M = 0.47, SD = 0.25; t(99) = 0.53, p = 0.60,

d= 0.11).

Following the example in prior work (Yousif & Keil, 2019), we also

analyzed the unique contribution of number, AA, and MA. However,

unlike in the adult work, there are not enough stimuli to sufficiently

tease apart number and AA; the two are highly correlated. Neverthe-

less, a regression model would be able to reveal if these effects are

driven by changes in number ratio rather than changes inAA ratio. That

was not the case. A model that includes all three parameters (num-

ber, AA, and MA) is a significant predictor of participant responses

(F[3,24] = 15.55; p < 0.001; R2= 0.62), yet no single cue uniquely pre-

dicts responses (ps > 0.25). In other words, this experiment is unable

to fully dissociate whether these effects are caused by number or AA.

Note, however, that this pattern of results would be no less surprising

if they were driven by number and not AA: it is still mysterious that

children (like adults) failed to discriminate differences in MA as large

as 30%. A confound with number does not explain children’s failure to

perceive true area. To address this confoundmore directly, Experiment
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3 uses a stimulus set with a set quantity of six items throughout the

entire task.

Older children were better able to discriminate AA compared to

younger children (t(99)=2.18; p=0.031), butwerenodifferent in their

performance onMA trials (t(99)= 0.15; p= 0.885). This increased per-

formance with age may reflect increased use of or reliance on AA, or it

may reflect domain-general improvements in attention or task-taking

ability. Because of this, we are reluctant to make any general claims

about the developmental trends, beyond highlighting the fact that the

use ofMAneither increased nor decreasedwith age (further validating

the notion that it plays little to no role in area perception).

In short, children as young as four appear to discriminatemore read-

ily on the basis of AA rather than MA. Though area acuity improves

throughout development (see also Odic et al., 2013), there is no devel-

opmental change in the use ofMA. Importantly, the tendency to rely on

AA appears to be stable. This pattern suggests that the AAH is a foun-

dational way of approximating area, evident even at the earliest ages

wewere able to test.

3 EXPERIMENT 2: EFFECTS ON NUMBER
ACUITY

What does children’s use of an AAH mean for existing work? Here,

we examine a single “case study”: the relative acuity of number and

area perception. Although prior work makes claims about the dif-

ferent developmental trajectories of number and area representa-

tions (Lourenco & Bonny, 2017; Odic et al., 2013), that work does

not account for perceived area. Here, we ask whether controlling AA

influences apparent number acuity. Our study is not meant to assess

whether additive area always or irresistibly influences number percep-

tion, but rather to assess if it ever does. Therefore, we aim to inves-

tigate this question in the simplest way possible: by having children

complete a number discrimination task with stimuli that are controlled

either for additive area or mathematical area.

3.1 Method

This experiment was identical to Experiment 1, except as indicated

below. A total of 98 children aged 4–7 participated (23 of 4-year-olds,

and 25 of 5-, 6-, and 7-year-olds). Note that the participants in this

experiment were mostly the same as those in Experiment 1, excluding

a fewwho completed only one portion of the task (2 of 4-year-oldswho

only completed the area task, and 2 of 6-year-oldswho each completed

only one portion). The participants who completed both experiments

did so in a counter-balanced order.

Children in this experiment indicated which of the stimuli appeared

greater in number. As in Experiment 1, there were two practice trials

that explicitly dissociated area and number. During these trials, chil-

dren were instructed to select the image with more circles, butwithout

counting. If a child made the incorrect choice, we would correct them

by saying “Why don’t we count them?While Dory’s bubbles do take up

more space, we can see that Nemo actually has more bubbles, so we

should pick Nemo. We want to do the same thing next time, but with-

out counting.” If a child continued to count in later trials, we would dis-

courage them from doing so. For example, wemight say that Nemo and

Dory needed our help quickly and that we did not have time to count.

This experiment used an independent set of stimuli. The default

stimulus alwayshad10discs. The second stimulus hadeither11, 13, 15,

or 17. Half the trials were AA-controlled (while MA varied randomly;

the average MA ratio was 0.79, with a minimum of 0.62 and maximum

of 0.95), and the other half were MA-controlled (while AA varied ran-

domly; the average AA ratio was 1.15, with a minimum of 1.02 and a

maximum of 1.31). There were 32 trials total (4 number ratios [1.10,

1.30, 1.50, 1.70] × 2 trial types [AA-controlled, MA-controlled], × 2

sides [left, right] × 2 stimuli [different stimuli with identical parame-

ters]). Full stimulus details are available on theOSF page.

3.2 Results and discussion

First, we checked to ensure that participants were successfully com-

pleting the number discrimination task. Across all age groups, partic-

ipants were above-chance at making number discriminations, regard-

less ofwhether the stimuliwere controlled forAA (M=0.71, SD=0.16;

t(97) = 13.50, p < 0.001, d = 1.36) or MA (M = 0.77, SD = 0.17;

t(99) = 16.04, p < 0.001, d = 1.62). This was independently true for all

ages (ps < 0.001; ds > 1.02). Furthermore, collapsed across trial type

(AA- vs. MA-controlled) there was a clear effect of ratio such that par-

ticipants were better able to discriminate displays with a greater dif-

ference in number (F(3, 291) = 46.32, p < 0.001, η2= 0.32). For AA-

controlled trials, accuracy ranged from0.52 for the lowest ratio to 0.78

for the highest ratio (but note that the second highest ratio, 1.5, had

a slightly higher accuracy of 0.80); for MA-controlled trials, accuracy

ranged from0.68 for the lowest ratio to0.84 for the highest ratio.How-

ever, the critical questionwaswhether participants’ number acuity dif-

fereddependingonhowareawas controlled; these results are shown in

Figure 4. For all age groups (collapsed across ratio), number acuity was

higherwhenMAwas controlled thanwhenAAwas controlled. This pat-

tern was insignificant for the 4- and 5-year-olds (ps > 0.14; ds > 0.18),

but significant for the 6- (t(24) = 2.34, p = 0.03, d = 0.47) and 7-year-

olds (t(24) = 3.19, p < 0.005, d = 0.64). This finding is consistent with

the results of adult studies indicating similar variation in acuity (Yousif

& Keil, 2020). As seen in Figure 4, though, these effects appear to be

driven by the smallest and largest ratios (1.1 and 1.7). This is true: col-

lapsed across age groups, there was a significant difference for the 1.1

(p < 0.001) and 1.7 (p = 0.032) ratios, but no significant difference for

the 1.3 or 1.5 ratios (ps>0.750). It is unclearwhy this effect is driven by

the smallest and largest ratios tested. This may be due to task-specific

strategies that differ across ratios (see Experiment 3), but we wish to

refrain from over-interpreting this pattern of results for now.

These results raise questions about how individual differences in

acuity should be interpreted (e.g., as in Cordes & Brannon, 2008, 2009;

Odic et al., 2013). In other words, under which condition (i.e., AA con-

trol or MA control) is performance a better indicator of “true” number
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F IGURE 4 Results of Experiment 2. (a) Difference in accuracy (MA-AA) is plotted on the y-axis, broken down by ratio (x-axis) and age (see
legend in top-right). (b) The same information but collapsed across age groups. Positive values indicate better performance whenMA is controlled;
negative values indicate better performance when AA is controlled. Error bars represent± 1 SE

discrimination ability? Moreover, how should relative differences in

acuity be interpreted, especially in light of correlationswith each other

and other cognitive abilities (e.g., Lourenco & Bonny, 2017; Lourenco

et al., 2012; Odic et al., 2013)? We do not intend to imply that “true”

acuity can never be discerned; instead, we only wish to highlight a

potential complexity in comparing relative acuity so that future work

may address it head-on.

Relatedly, a large body of work has concerned itself with “congruity

effects” between number and other continuousmagnitudes (e.g., Bran-

non et al., 2004;Hurewitz et al., 2006; Rousselle et al., 2004). For exam-

ple, it has been suggested that representations of time, space, quantity,

and other magnitudes rely on similar cortical processes, or one “gen-

eral magnitude” representation (Lourenco & Longo, 2010; Sokolowski

et al., 2017;Walsh, 2003). In support of this view, priorwork has identi-

fied Stroop-like errors between area and number (Brannon et al., 2004;

Hurewitz et al., 2006;Rousselle et al., 2004) –much like thoseobserved

here. Our results bear on these past findings in two key ways: (1) they

demonstrate a congruity effect for a novel dimension (i.e., AA, which

has never been studied in the context of congruity effects) and (2)

they raise questions about the cause of previously observed congruity

effects. As Yousif andKeil (2019) argue, it is possible that this confound

betweenAA (whichhasnotbeen studied in this context) andMA(which

is often studied in this context) may lead to the appearance of a bi-

directional congruity effect between area and number. Consistentwith

this possibly, in Experiment 1, we provide evidence that number seems

to have little or no influence on area estimates. Yet, here, we have pro-

vided evidence that perceived area seems to influence number judg-

ments.

4 EXPERIMENT 3: EQUATING NUMBER

How can we be sure that the results of Experiment 1 implicate “addi-

tive area” specifically? While much work has addressed the relation

between number and area indirectly (see, e.g., Yousif & Keil, 2019,

2020), recent work with adults has demonstrated an effect of addi-

tive area on area judgments even in stimuli that are perfectly equated

for number (Yousif et al., 2020). In other words, even when num-

ber was set at a fixed value (e.g., 6 or 10) across all trials, adult par-

ticipants still discriminated displays only based on “additive area.”

Here, we borrow this exact design: we use a subset of the stimuli

tested on adults and ask whether children, like adults, discriminate

visual displays on the basis of additive area even when number is

controlled.

4.1 Method

This experiment was identical to Experiment 1 except as noted. Fifty

children (25 of 4-year-olds and 25 of 5-year-olds) participated. We

specifically targeted the youngest age ranges tested in our previous

experiments (4- and 5-year-olds). Because these youngest children

demonstrated use of additive area in Experiment 1, showing that they

use additive area in this number-controlled task would provide a rel-

atively definitive demonstration that children do in fact robustly rely

on this cue (independently from other factors). Due to the COVID-19

pandemic, approximately half of our data were collected in-person (14

of 4-year-olds and 10 of 5-year-olds) and half were collected online (11

of 4-year-olds and 15 of 5-year-olds). Eleven additional children failed

to complete the task, and so were excluded prior to data analysis.

All the stimuli used in this experiment were borrowed from a previ-

ous studyonadults’ areaestimation (Yousif et al., 2020). Thegoal of this

study was to use stimuli that were equated in number. In other words,

every single display that children saw throughout the experiment had

exactly six dots; number was never manipulated. Children who com-

pleted the task in person completed 40 trials of four unique trial types.

For half of the trials, AA varied while MA was equated (in two differ-

ent ratios; 1.15 and 1.10); for the other half of trials, MA varied while
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F IGURE 5 Results of Experiment 3. Overall results for four-year-olds (a), 5-year-olds, (b) and adults (c), per Yousif et al., 2020. Accuracy is
depicted on the y-axis, broken down by ratio (see x-axis). (d) Simulated results for this same experiment. Dashed gray lines represent chance
performance. Error bars represent± 1 SE. Blue bars indicate trials which varied in AAwhileMAwas held constant; red bars indicate trials which
varied inMAwhile AAwas held constant. (e–h) Accuracy shown for each observer, for 4-year-olds (e), 5-year olds (f), and adults (g) as well as
simulated data (h). The adult data in (c) and (d) has been randomly down-sampled so that the number of participants is matched to the kid data. Of
note here is the striking degree of polarization: children seem to clearly rely on one cue or the other, such that performance for the two cues is
strongly negatively correlated (more so than simulations of random behavior, as well as adults)

AAwas equated (in the same two ratios; 1.15 and 1.10). There were 10

unique trials for eachof the four trial types. Tomake the taskmoreman-

ageable for online participants, childrenwho completed the task online

completed 24 trials. The counterbalancing was identical to that of the

in-person participants, except that these participants saw six unique

trials for each trial type instead of 10.

4.2 Results and discussion

The results are shown in Figure 5A and B. We first analyzed data from

the 4-year-olds. Participants were unable to discriminate both AA and

MA. We conducted one-sample t-tests on each AA/MA ratio. Partic-

ipants were unable to discriminate both AA (1.10 ratio: M = 0.57,

SD = 0.25, t[24] = 1.40, p = 0.18, d = 0.28; 1.15 ratio: M = 0.57,

SD = 0.27, t[24] = 1.34, p = 0.19; d = 0.27) and MA (1.10 ratio:

M = 0.48, SD = 0.22, t[24] = 0.40, p = 0.69, d = 0.08; 1.15 ratio:

M= 0.56, SD= 0.21, t[24]= 1.48, p= 0.15; d= 0.30).

We then analyzed data from the 5-year-olds. We again conducted

one-sample t-tests on each AA/MA ratio. Participants were unable

to discriminate AA (1.10 ratio: M = 0.45, SD = 0.37, t[24] = 0.74,

p = 0.47, d = 0.15; 1.15 ratio: M = 0.41, SD = 0.37, t[24] = 1.17,

p= 0.24; d= 0.23) but did discriminate usingMA (1.10 ratio:M= 0.63,

SD = 0.28, t[24] = 2.22, p = 0.04, d = 0.45; 1.15 ratio: M = 0.68,

SD= 0.30, t[24]= 2.87, p= 0.008; d= 0.58). In other words, unlike any

pattern previously observed in adults, children successfully discrimi-

nated between stimuli that varied in true area while AA was held con-

stant. However, these overall statistics obfuscate an important aspect

of these data: that children’s responses are highly polarized (as can be

seen in Figure 5E and F). In other words, individual children tend to

rely exclusively on AA or MA, to such an extent that suggests children

may have relied on overt strategies to complete the task (rather than

responding based on their genuine impression on a trial-by-trial basis).

In fact (as can be seen in Figure 5G and H), children aremore polarized

than both simulated random data and adults (who completed this task

on identical stimuli).

To confirm asmuch, we conducted permutation tests to assesswhat

level of “polarization” (i.e., children using only AA or onlyMA) would be

expected by random chance. We simulated one million repetitions of

our experiment, each of which included simulated data from 25 partic-

ipants completing 40 trials each. For each trial, we randomly generated

a response. For each simulation (and for our own data) we calculated

three “polarization scores”: one for the overall data, one for the AA tri-

als, and one for the MA trials. For the overall data, polarization scores

were calculated as the difference between the number of AA selec-

tions and the number of MA selections. For the individual trial types,

polarization scoreswere calculated as the number of selections over or

under chance performance. So if therewere eight trials, at-chance per-

formancewould involve four selections in favor of AA and four against;

if a participant selected AA six times, we would assign a polarization

score of 2. The code used to conduct these permutation tests, as well

as the resulting data, are available on our OSF page.

The averageoverall polarization score in onemillion simulationswas

2.51 (SD = 0.39). The average polarization scores for AA and MA in
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those million simulations were both 1.76 (SD = 0.28). First, we com-

pared the 4-year-olds’ data to these simulated values. Their overall

polarization score was 4.99, a value more than six standard deviations

greater than themeanvalue inour simulations (p<0.001). Their overall

polarization score for AA trials was 3.45 (again, six standard deviations

greater than themean; p< 0.001) and forMA trials was 3.10 (five stan-

dard deviations greater than the mean; p< 0.001). Next, we compared

the 5-year-olds’ data to these simulated values. Their overall polariza-

tion score was 8.36, a value more than 11 standard deviations greater

than the mean value in our simulations (p< 0.001). Their overall polar-

ization score for AA trials was 4.88 (11 standard deviations greater

than the mean; p < 0.001) and for MA trials was 3.16 (five standard

deviations greater than themean; p<0.001). Collectively, these results

demonstrate that children adopted distinct strategies in this task (see

Figure 5E–H for a visual depiction of the polarized responses, in com-

parison with simulated random data).

Unlike in Experiment 1, 4-year-olds were in this experiment unable

to discriminate stimuli on the basis of AA. By age 5, children exhibit

above-chance performance for MA but not AA trials. We propose that

this pattern reflects children’s adoption of a strategy particular to the

stimuli for this task.Whennumber is held constant betweendot arrays,

the only way to dissociate additive area and mathematical area is to

manipulate the variance in dot sizes across sets. In practice, this means

that the set with more mathematical area, or less additive area, will

almost always contain the single largest item. Thus, lacking a complete

understanding of cumulative area, one strategy that children may use

is to select the single largest object, rather than the largest set, to guide

their selections. Another strategy that children might use is to select

the display with more uniform dot sizes. A participant adopting this

strategywould almost always choose the displaywithmoreAA, orwith

less MA (and so, again, could explain the polarization that we observe).

Both of these strategies are reflected in the polarized responses that

we observed.

Another way to think about the difference in performance between

children and adults is a difference in local versus global perception (or

local vs. global attention). Whereas adults may more readily attend to

the “ensemble” of dots (e.g., Marchant et al., 2013), children may more

readily attend to local features (i.e., the largest individual dot). That

said, even children perceive ensembles in some cases, and their aver-

age size representations, like adults, are based on diameter not cumula-

tive area (Sweeny et al., 2015) – exactly as the “additive area heuristic”

would predict. It would be strange indeed if children’s average size esti-

mationswere based on an “additive heuristic,” but that their cumulative

size estimations were based on true, mathematical area. This is more

reason to think that additive area provides a more general explanation

of size perception across tasks.

We would draw analogy to classic Piagetian tasks, in which children

exhibit some failures that are not likely due to perception but instead

due to some failure to understand the task. For example, why do chil-

dren say that a set of pennies that is spread out is more numerous than

an (equal) set of pennies that is less spread out (Piaget, 1965)? Surely

children do not see more pennies in one case than the other. Indeed,

it has been shown that when the question is framed differently, chil-

dren understand that the two sets are equal in number (Hudson, 1983).

Similarly, here, we think the most conservative interpretation of these

data is that, when faced with highly constrained stimuli, children will

fall back on task-specific strategies. We cannot definitively conclude

that children use either AA orMA for purposes of area estimation.

5 GENERAL DISCUSSION

In Experiment 1, we showed that children, like adults, relied on an

additive area heuristic to estimate area. In Experiment 2, we showed

how this insight may challenge our current understanding of the

relationship between number and area perception, raising questions

about what ought to be considered “true” acuity, and whether prior

studies have properly isolated number. Finally, in Experiment 3, we

showed thatwhen stimuli are constrained and ratios are small, children

fall back on specific strategies to make area judgments. These findings

preliminarily suggest that children, like adults, may rely on a heuristic

to estimate visual area; however, these findings also highlight a num-

ber of theoretical and practical challenges that prevent any strong

claims about children’s area perception (and, consequently, number

perception).

Isolating number from other continuous spatial dimensions is nec-

essary to demonstrate that children and infants can truly estimate

approximate number. Thus, it is not surprising that this concern has

been raised before. A popular counterpoint to some of the initial work

positing large number discrimination in infancy (Xu & Spelke, 2000)

was that infants rely on contour length (or perimeter) rather than

number to discriminate between dot displays that vary in number

(Clearfield &Mix, 1999). However, this point was dismissed when later

work accounted for this confound (Xu et al., 2005), and when new

manipulations began controlling contour length in clever ways (e.g.,

McCrink & Wynn, 2007). Since then, it has been generally accepted

that children and infants can discriminate number – all while area esti-

mation itself has been largely ignored.

It is important to consider exactly how number, mathematical area,

and additive area are confounded in dot displays like those used here.

Critically, controlling for mathematical area while manipulating num-

ber (as many studies do; e.g., Xu & Spelke, 2000) actively creates a con-

found with additive area. Imagine two sets of dots which are equated

for MA but vary in number, such that one has 30% more number than

the other. All else equal, the display with more number will also have

more additive area (about 15% more, on average), and thus more per-

ceived area. In other words: perceived area and number are still con-

founded -posing a serious challenge to the interpretationofmany stud-

ies, and numerous practical challenges for stimulus creation in both

adults and children (for a lengthier explanation of this issue, see also

Yousif & Keil, 2021a).

In the contemporary quantity perception literature, a few other

studies have investigated area estimation explicitly (Brannon et al.,

2006; Lourenco et al., 2012; Odic et al., 2013). For example, it has been

suggested that children of all ages have greater area acuity than num-

ber acuity (Odic et al., 2013; but for contradictory results in infants, see
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Cordes & Brannon, 2008, 2009). The present work does not directly

challenge this finding, but it does challenge its interpretation. For

example, number acuity varies across displays that control for either

additive area ormathematical area – butwhich of these area estimates

reflects true acuity? It is possible, in theory, that number acuity is equal

to or greater than area acuity throughout development, but that exist-

ing studies failed to properly measure true number acuity, area acuity,

or both. Further, work with adults suggests that additive area dramat-

ically influences the perception of number (but that number does not

appear to influence the perception of area; see Yousif & Keil, 2020),

raising the concern that number estimation cannot be isolated at all

(and that there is no “true” area or number acuity in the first place; see

also Leibovich et al., 2017).Our view is that studies on quantity percep-

tion should more seriously consider the role that perceptual heuristics

may play in children’s judgments.

5.1 Reasons to believe children do rely on an
“additive area heuristic”

Themost crucial finding here is not about number perception, but area

perception: the present results (in combination with work in adults;

Yousif & Keil, 2019, 2020; Yousif et al., 2020) provide compelling evi-

dence that impressions of area do not reflect reality (even if the pre-

cise mechanisms remain uncertain). Here, we have proposed a specific

rule that governs area perception: that children (like adults) add the

dimensions of space together rather than multiply them. Experiment 1

provided evidence in support of this hypothesis: children discriminated

displays that differed in additive area but failed to discriminate displays

that were equated in terms of additive area.

However, regression analyses revealed that neither additive area

nor number was a significant predictor of responses in Experiment 1 –

raising the possibility that the patterns observed here are not about

area perception at all, but, instead, reflect a conflation with number.

Yet there are several reasons to believe that additive area neverthe-

less provides the best explanation. First, note that this study was not

designed to tease apart additive area from number; this would require

significantly more data. Second, the regression analyses are imperfect

here, given that more than half of the stimuli do not vary in additive

area (and so detecting variance based on additive area is more chal-

lenging). Third, although numbermay explain a tendency to choose the

stimuli withmore additive area, it cannot explain the failure to discrim-

inate displays that vary in true,mathematical area. If number explained

these results, one may straightforwardly predict below-chance perfor-

mance for the mathematical area trials (but this is not what we find).

Fourth, area/number congruity effects are often modest – statistically

discernable in large studies, but not visually apparent. There is no com-

pelling reason to believe that congruity effects could result in such

large distortions of perceived area. Finally, there is the matter of par-

simony: prior work has shown numerous compelling demonstrations

that something like an “additive area heuristic” explains adults’ impres-

sions of area. When we observe the same pattern in children, it may

be parsimonious to assume that there is one underlying explanation

(keeping in mind prior work demonstrating the use of a similar heuris-

tic; Anderson &Cuneo, 1978).

Beyond the data here, there are many reasons that “additive area”

mayprovideageneral explanation for areaperception. First, it hasbeen

shown that even exceedingly simple manipulations challenge other

models of area perception. For example, simply rotating squares 45

degrees increases their perceived area (Yousif et al., 2020), a finding

that is at odds with both veridical models of area perception and clas-

sic “scaling models” of area perception (e.g., Stevens & Guirao, 1963).

Second, additive area better explains area judgments thanmany possi-

ble related dimensions (e.g., cumulative perimeter; Yousif & Keil, 2019;

Yousif et al., 2020). Third, these effects have been shown to general-

ize across a range of 2D shapes, including circles (Yousif & Keil, 2019,

2020), rectangles (Yousif & Keil, 2019), ellipses (Yousif & Keil, 2019),

diamonds (Yousif et al., 2020), and squares (Yousif et al., 2020). Fourth,

and perhaps more importantly, this illusion of size perception extends

beyond 2D area perception; judgments of 3D volume (for both cubes

and spheres) also appear to be explained by an “additive heuristic”

(Bennette et al., 2021). Finally, biases of children’s area perception

like these have been well-documented for decades, at least for single-

object comparisons (e.g., Anderson & Cuneo, 1978). Collectively, these

findings suggest that the visual systemmay generally fail to accurately

integrate information across multiple spatial dimensions (see Carbon,

2016) – a problem that is resolved by using an “additive heuristic.”

5.2 Theoretical and practical challenges to
studying area perception in children

Although our findings provide some compelling reasons to believe that

children, like adults, may rely on an “additive area heuristic,” they also

raisenumerous theoretical andpractical challenges to the studyof area

perception in the early years of life.

(1) Signal Clarity Theory. This view (Cantrell & Smith, 2013) posits

that dimensions with higher variance will be more salient to partic-

ipants in general than dimensions with lower variance. This sort of

explanation could apply to the results of Experiment 1. Although addi-

tive area and mathematical area specifically varied within the same

range (from 1.00 to 1.30), number did not. Instead, number varied in

a range from 0.70 to 1.80 – so there is good reason to believe that

this information, according to Signal Clarity Theory, should be more

salient. Despite this, number appears not to be the predominant expla-

nation of behavior: regression analyses clearly revealed that number

alone could not explain children’s responses. In other words, Signal

Clarity Theory suggests that our design in Experiment 1 is biased in

favor of number – yet number still fails to explain the patterns we

observe.

(2) Existing models with many components. Several proposals have

been made about how to measure or control many continuous dimen-

sions at the same time (e.g., Barth, 2008; DeWind et al., 2015; Gebuis &

Reynvoet, 2011; Salti et al., 2017). However, these holistic approaches

typically do not focus on area perception (but see Barth, 2008). Part

of our suggestion is that these complex models should be applied to
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area perception with the same level of rigor as models being applied to

number perception. Indeed, when this has happened, hints of the

present effects emerge. For example, Barth (2008) found that cumula-

tive diameter (functionally equivalent to additive area in many stimuli)

was an excellent predictor of area judgments – as good, or better, than

area itself (i.e.,mathematical area).DeWindet al. (2015) similarly found

that the second-best predictor of number judgments was total perime-

ter (also functionally equivalent to additive area inmany stimuli).

(3) Flawed stimulus design? A recent critique construes the effects

found here, and in related work, as products of a “flawed stimulus

design” (Park, 2021; but see Yousif & Keil, 2021b). The argument goes

as follows: In order to dissociate additive area frommathematical area,

other dimensions, like number, have to vary in unusual ways. As theo-

ries like SignalClarityTheorypoint out, this could lead to adifference in

salience across dimensions. This is true. As we highlighted above, num-

ber varies to a much greater degree in Experiment 1 than either addi-

tive area or mathematical area. The critical question here is whether

this matters in practice. In our results, it does not: If anything, in Exper-

iment 1 there is a bias in favor of number – and yet number is not the

sole factor explaining children’s judgments (for a more in-depth treat-

ment of this argument, see Yousif &Keil, 2021b). In Experiment 3, num-

ber is not a factor at all – yet we still observe a systematic pattern of

results.

There still might be interplay between dimensions and it is always

important to consider how other dimensions are measured or manip-

ulated. But we do now need to acknowledge that area perception

seems to be illusory (see Yousif & Keil, 2021a, 2021b, for review).

Given that this is true, we need to think deeply about how congruity

effects betweennumber and true,mathematical area ought to be inter-

preted – and how children come to tease these dimensions apart.

(4) Is this really a confound? Experiment 2 demonstrates a single

instance in which controlling for additive area vs. mathematical area

could result in a different pattern of results (but for more examples,

see Yousif & Keil, 2020). While these effects are empirically modest,

they are theoretically important, as entire perspectives rest on them

(e.g., on the prediction that there are bi-directional congruity effects

between area and number). Whether, or to what extent, additive area

is confounded with number is highly dependent on the specific man-

ner in which the stimuli are constructed, and on how area and num-

ber are controlled relative to one another. Many studies employ a

method of using both area-congruent trials (in which number and area

are positively correlated) and area-incongruent trials (in which num-

ber and area are negatively correlated). Yet even with very modest

assumptions about how stimuli are created, AA is almost always going

to be confounded with number and mathematical area (see Yousif &

Keil, 2021a). (This does not mean that additive area is necessarily con-

founded, but rather that it just happens to be given theway these stimuli

are typically designed.)

(5) Children’s understanding of cumulative area. It is challeng-

ing to convey the idea of cumulative area to young children. One

may wonder, for example, if children chose to sometimes select

the display with the single largest object (rather than the set with

the most cumulative area), as may have been the case in Experi-

ment 3. Without any way to ensure that children understand cumu-

lative area, we can only speculate about why they adopted the

strategies that they did. However, data from Experiment 3 clearly

demonstrate that children are being strategic in some way (whether

because they misunderstand the question about cumulative area, or

for some other reason). Thus, we think that future work should be

especially careful when probing children’s impressions of cumulative

area.

5.3 Conclusion

Do children estimate area using an “additive area heuristic”? These

results offer support for such an account. However, we identify sev-

eral practical concerns – namely, children’s limited understanding of

the concept of cumulative area – that prevent any strong conclusions.

Nevertheless, these findings raise question about how prior studies

have measured both number and area perception. Thus, the present

results suggest new theoretical and practical directions for the field

to consider. This serves as a first step toward understanding children’s

visual impressions of – as well as their conception of – cumulative

area.
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ENDNOTE
1 Note that this experiment and the subsequent experiment were con-

ducted almost entirely on the same group of children in a counter-

balanced order. Therefore, one may wonder whether the order of these

two experiments impacted children’s performance on these tasks. In

short, here, and for all analyses reported in this paper, there were no dif-

ferences between the children that completed this experiment first ver-

sus the other experiment first. While we do not exhaustively report the

differences between these groups for every analysis in this paper, we

wanted to make note of the similarity across conditions for this analy-

sis, which is clearly most integral to our conclusions. Children who com-

pleted this experiment first had an average accuracy of 0.68, 0.61, 0.61,

0.43, 0.44, 0.45, and 0.49 for the AA-1.30, AA-1.20, AA-1.10, Equal, MA-

1.10,MA-1.20, andMA-1.30 ratios, respectively.Childrenwhocompleted

this experiment second had very similar values of 0.68, 0.67, 0.65, 0.52,

0.48, 0.43, and 0.46, respectively. The basic AA effect (AA vs. chance) is

significant in both cases, p< 0.001.
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