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A B S T R A C T   

How do we represent extent in our spatial world? Recent work has shown that even the simplest spatial judg-
ments — estimates of 2D area — present challenges to our visual system. Indeed, area judgments are best 
accounted for by ‘additive area’ (the sum of objects' dimensions) rather than ‘true area’ (i.e., a pixel count). But is 
‘additive area’ itself the right explanation — or might other models better explain the results? Here, we offer two 
direct and novel demonstrations that ‘additive area’ explains area judgments. First, using stimuli that are si-
multaneously equated for number and all other confounding dimensions, we show that area judgments are 
nevertheless explained by ‘additive area’. Next, we show how ‘scaling’ models of area fail to explain even basic 
illusions of area. By contrasting squares with diamonds (i.e., the same squares, but rotated), we show a robust 
tendency to perceive the diamonds as having more area — an effect that no other model of area perception 
would predict. These results not only confirm the fundamental role of ‘additive area’ in judgments of spatial 
extent, but they highlight the importance of accounting for this dimension in studies of other features (e.g., 
density, number) in visual perception.   

1. Introduction 

In some contexts we make estimates of “how many” in terms of 
exact or approximate number (how many pins are standing?; how many 
people are ahead of me?), but in other contexts we want to know “how 
much” in terms of area (how much of that field can I harvest before 
sunset?) or volume (how much of that pile of fruit can I eat?). Here we 
focus on area as one of the most common spatial estimation tasks we 
confront in our daily lives, yet one where we seem to distort our esti-
mations in a highly predictable manner. For example, suppose you need 
to paint several different surfaces, and you must decide how much paint 
to purchase. Imagine that one surface is 20 m by 10 m that will be blue, 
and three surfaces are each 7 m by 3 m that will be green. To decide 
how much paint to buy, you could just do the math: you need 
20 × 10 = 200 m2 of blue paint, and you need (7 × 3) × 3 = 63 m2 of 
green paint. Clearly, you need much more blue paint than green paint. 
But suppose that you let your visual system solve the same problem by 
estimation rather than by computation. Would this “eyeball” estimate 
arrive at the same answer? 

Despite the ubiquity of problems like these, we know surprisingly 
little about how our visual system solves simple problems of area per-
ception. When positioning furniture, when purchasing and preparing 
food, and when drawing diagrams or making art, we are forced to 

reckon with our visual system's ability to perceive space. Yet our per-
cept of area does not reflect ‘true area’ at all (i.e., a true pixel count;  
Yousif & Keil, 2019; see also Carbon, 2016); instead, our percepts of 
area seem to reflect ‘additive area’ (the sum of the length and width of 
every item in the display). When observers complete area discrimina-
tion tasks for dot displays that vary in either ‘additive area’ or ‘true 
area’ (a true pixel count; e.g., for an array of squares, the products of the 
length and width summed over every item in the display) while con-
trolling the other, variation in ‘additive area’ predicts essentially all of 
the variance in area judgments; in fact, observers were unable to dis-
criminate displays that were equated in ‘additive area’, even when the 
true pixel count varied by as much as 30% (Yousif & Keil, 2019; see  
Fig. 1 for a graphical depiction of ‘Additive area’). The perception of 
area seems to be systematically biased — almost perfectly tracking 
variance in ‘additive area’. If you relied on your visual system alone in 
the paint purchasing example, you may end up purchasing equal 
amounts of green and blue paint — because the sums of their dimen-
sions are equal (20 + 10 = 30; [7 + 3] × 3 = 30), even though in 
reality you need more than three times as much blue paint. 

That said, there are other models of area perception, most of which 
are roughly compatible with the ‘additive area’ view (e.g., Ekman & 
Junge, 1961; Nachmias, 2008, 2011; Stevens & Guirao, 1963;  
Teghtsoonian, 1965). One class of these models (e.g., Ekman & Junge, 
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1961; Stevens & Guirao, 1963; Teghtsoonian, 1965) which we will refer 
to generally as ‘scaling models’ holds that perceived area is equal to true 
area raised to the power of some number less than 1. For example,  
Stevens and Guirao (1963) claimed that area is scaled with an exponent 
of 0.7 (but there is disagreement about the exact value of this exponent; 
see Ekman & Junge, 1961; Teghtsoonian, 1965). In some respects, 
scaling models are like the ‘additive area’ model. Both views agree, for 
example, that area perception is not veridical — and that area per-
ception will be distorted most for large shapes. Furthermore, for simple 
shapes (e.g., circles and squares), ‘additive area’ predicts the same be-
havior as a scaling model with an exponent of .5 (We note however at 
least study that has investigated area perception for irregular shapes; 
see Odic et al., 2013. In this work, area discriminations are shown to be 
ratio-dependent based on the true, mathematical area of the shapes. It is 
unclear, however, to what extent ‘additive area’ and ‘mathematical 
area’ are confounded in these cases. It is possible that ‘additive area’ 
does not apply to irregular shapes, or it is possible that the two are 
highly correlated in this work. In the present work, we focus only on 
regular shapes — circles and squares — because these are by far the 
most representative in the literature on quantity estimation.) 

1.1. Why we must understand area perception 

One reason to study area estimation is because of its relation to 
quantity perception more broadly. For example, much work has in-
vestigated the perception of numerosity (e.g., Anobile et al., 2016;  
DeWind et al., 2015; Halberda, Mazzocco, & Feigenson, 2008; Lourenco 
et al., 2012) and many confounded spatial dimensions such as area (see  
Odic et al., 2013), perimeter (sometimes also referred to as ‘contour 
length’; Clearfield & Mix, 1999), density (the degree of compactness of 
objects within a space; see Durgin, 1995, 2008; Dakin, Tibber, 
Greenwood, & Morgan, 2011; see also Anobile et al., 2014), and convex 
hull (the spatial envelope of the objects within a space; Clayton et al., 
2015). To understand how these cues collectively contribute to quantity 

estimation (see also see Gebuis & Reynvoet, 2011; Leibovich et al., 
2017), we need to understand how we perceive each in isolation (see 
also Barth, 2008; Lourenco et al., 2012; Odic et al., 2013). Suppose, for 
example, you want to study the relative contribution of area and nu-
merosity to quantity judgments. You might create stimuli that vary in 
number but are equated in area and vice versa — but what does it mean 
to equate area? 

Virtually all existing work on quantity estimation rests on an un-
proven assumption: that perceived area is equal to true area (i.e., the 
actual number of pixels on the screen). If area perception is illusory (as 
recent work suggests; Yousif & Keil, 2019), then our understanding of 
the relation between area perception and quantity estimation may be 
confused. In fact, it has been shown that accounting for perceived area 
(i.e., ‘additive-area’) substantively changes conclusions one would draw 
about area, number, and quantity estimation more broadly (Yousif 
et al., 2019; Yousif & Keil, 2020). 

Another reason we must study area perception is because illusions 
of area may speak to a fundamental constraint of our visual system. 
Indeed, one explanation for illusions like these is that we struggle to 
perceptually integrate multiple spatial dimensions (e.g., Carbon, 2016). 
Perhaps this view explains classic illusions of volume (in which a tall 
glass appears more voluminous than a shorter glass; e.g. Frayman & 
Dawson, 1981; Raghubir & Krishna, 1999) and possibly even some il-
lusions of numerosity perception (e.g., DeWind et al., 2020). Because 
the way in which we perceive area has such widespread implications, it 
is crucial to understand the spatial features that explain judgments of 
area. The answer to this question speaks not only to how we sponta-
neously perceive quantity in our spatial world, but also directly informs 
ongoing debates about whether (or the extent to which) number plays a 
privileged role in human cognition (e.g., Leibovich et al., 2017). So: is 
‘additive-area’ the right explanation of area perception? 

Fig. 1. A visual explanation of the relationship between ‘Additive area’ and ‘Mathematical area’. Note that ‘Mathematical area’ refers to the true, objective area value; 
yet prior work demonstrates that ‘Additive area’ better captures subjective impressions of area. In this figure, we demonstrate how ‘Additive Area’ and ‘Mathematical 
area’ can be teased apart by varying the sizes of objects within a display. 
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1.2. Current study 

The original study on AA addressed several alternative explanations 
that may have explained area judgments but did not address all of them 
directly. Therefore, it is possible that some feature other than ‘additive- 
area’ explains area judgments (or that some other model better captures 
the observed data). For example, in the original work, number was 
manipulated in an indirect manner, and number was not manipulated 
at all in several of the experiments (Yousif & Keil, 2019). Density and 
convex hull were not addressed, even though each of these dimensions 
has been discussed as playing a crucial role in the perception of 
number. To find out whether ‘additive area’ truly explains area judg-
ments, here we first ask whether ‘additive area’ still explains variance in 
area judgments even when simultaneously accounting for number, 
density, and convex hull. Observers viewed displays that vary in either 
‘additive area’ (henceforth, AA) or ‘mathematical area’ (i.e., true area; 
henceforth, MA) while the other dimension was equated. Across these 
displays, number was always set at a fixed quantity of 6 in Experiment 
1a and 10 in Experiment 1b. By designing the stimuli in this way, 
density and convex hull are intrinsically equated on average (by virtue 
of number and area being simultaneously equated). We chose these 
dimensions because they are some of the most important in the study of 
number perception, and because other dimensions (e.g., perimeter) 
were already addressed in prior work (e.g., Yousif & Keil, 2019). 

One possibility is that AA does not explain area judgments — and 
that the previous results were due to a confound with some un-
accounted for dimension (like density or convex hull). In other words, it 
is possible that the original study documenting AA (Yousif & Keil, 2019) 
failed to properly account for all possible dimensions that could explain 
area judgments. If true, we should expect that observers will be able to 
discriminate displays that vary in MA but not in AA (once these other 
dimensions are accounted for). On the other hand, if AA does explain 
area judgments, then we should expect that observers will be able to 
discriminate displays that vary in AA but not in MA (mirroring the 
original AA results, but after accounting for these new dimensions). Of 
course, it is also possible that the truth lies somewhere in between: that 
observers will successfully discriminate stimuli that vary in both AA 
and MA, or that they will fail to discriminate stimuli that vary in both 
AA and MA. Even if these results are mixed (i.e., observers discriminate 
using both AA and MA, or neither), there would still be cause for 
concern: this would nevertheless mean that area judgments are fun-
damentally illusory. 

Furthermore, the original work did not address alternative models 
of area perception, most notably classic ‘scaling’ models (e.g., Ekman & 
Junge, 1961; Stevens & Guirao, 1963; Teghtsoonian, 1965). Here, we 
test one of the scaling models' most essential predictions: that objects of 
equal area should be perceived as having equal area. To do so, we 
compare squares vs. diamonds. According to scaling models, a square 
and an equivalent square rotated 45 degrees (i.e., a symmetrical dia-
mond) should be perceived as equal. But the ‘additive area’ perspective 
may predict something more interesting: that diamonds are perceived 
as having more area than equivalent squares (if the horizontal and 
vertical axes of shapes are prioritized; as in Li, Peterson, & Freeman, 
2003; Yousif, Chen, & Scholl, 2020). In a second experiment, we test 
this hypothesis directly. 

2. Experiment 1a: equating number (6 items) 

Previous studies on AA used displays that varied in numerosity 
(Yousif & Keil, 2019). Although that work controlled numerosity in-
directly, it failed to test for differences in AA vs. MA when numerosity 
was held constant. Here, we tested area perception in the same way 
except that all stimuli had a fixed numerosity of six (see Fig. 2A and B). 
Does AA still best explain area discriminations? 

2.1. Method 

This experiment mirrored the design of previous studies on ‘additive 
area’ (Yousif & Keil, 2019). This experiment was pre-registered, and 
raw data are posted on our OSF page. 

2.1.1. Participants 
100 observers were recruited via Amazon's Mechanical Turk, 

though 2 observers were excluded because they did not complete the 
task. All observers consented prior to participation, and these studies 
were approved by the IRB at Yale University. 

2.1.2. Materials 
All of the stimuli were generated via custom software written in 

Python with the PsychoPy libraries (Peirce et al., 2019). The aim was to 
create pairs of stimuli that varied in either AA or MA while the other 
was equated. Virtually all the details mirror those of the original design 
(see Yousif & Keil, 2019). For each stimulus pair, we randomly gener-
ated an initial set of discs and then pseudo-randomly generated a 
second set of objects based on a given AA ratio. The dots ranged in from 
20 pixels to 120 pixels in diameter (though the exact size depends on 
the participants display). Unlike the original experiments, these dis-
plays always had exactly 6 items. Stimulus pairs were generated ran-
domly until a pair met both the AA criterion and the MA criterion, at 
which point that pair would be rendered another time and saved. The 
second stimulus (i.e., the one that was pseudo-randomly generated to 
match the first) always had more area (whether AA or MA) than the 
initial stimulus. While density and convex hull were not explicitly 
constrained, they were intrinsically equated for the following reasons. 
Insofar as both area and number were equated, density must also be 
equated. (We note that our own work raises questions about how 
density ought to be equated in the first place; if perceived area does not 
track MA, then what about perceived density? For our purposes, we 
ignore this complication, accepting that either controlling MA or AA 
while controlling number must have accounted for density.) Similarly, 
the average convex hull did not vary across the two stimulus types (i.e., 
those controlled for AA vs. MA; and mathematically this must be the 
case insofar as number, density, and area are all equated). 

Of note, there are a limited number of ways to de-confound AA and 
MA. When equating numerosity across displays, the only way to tease 
these two dimensions apart is to manipulate the variance in size across 
the items. For example, imagine some simple squares. Consider a 2 × 2 
square and a 6 × 6 square. The combined MA of these shapes would be 
40 (2 × 2 + 6 × 6). The combined AA of these shapes would be 16 
(2 + 2 + 6 + 6). Now consider you have two 4 × 4 squares. The 
combined MA of these shapes would be 32 (4 × 4 + 4 × 4) but the 
combined AA would also be 16 (4 + 4 + 4 + 4). In this example, two 
displays with equal AA vary in MA. Using the same principle, it is also 
possible to have displays that vary in AA but are equated in MA. In 
other words, dissociating AA and MA in this experiment necessarily 
involves a difference in the variance of object sizes. Note however that 
this is not true when numerosity is allowed to vary across stimuli (see  
Yousif & Keil, 2019). For more information about how AA, MA, and 
number covaried, see the “Stimulus Details” files on the OSF page. The 
images depicted in Fig. 2A and B are representative, as they were actual 
images used in this experiment. 

While AA was controlled, MA could vary in either a 1.10 or 1.15 
ratio (and vice versa for AA while MA was controlled). As there are 
mathematic constraints on how much AA and MA can differ, these ra-
tios were selected to maximize the differences between them. Because 
of the pseudo-random nature of stimulus creation and the mathematical 
constraints involved in creating such stimuli, MA was never perfectly 
matched with the stated ratio; it could vary ± 1%. That is, if the MA 
ratio for a given trial was 1.10, then we allowed the difference in MA to 
fluctuate between 1.09 and 1.11. 
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2.1.3. Procedure 
The task itself was administered online via Amazon Mechanical 

Turk, using custom software. On each trial, observers saw two spatially 
separated displays consisting of sets of blue- or orange-colored dots, 
presented side-by-side in the center of the screen, with 50 pixels of 
space in between (blue always appeared on the left, orange on the 
right). Each display was 400 pixels by 400 pixels. The side that con-
tained the set with more area (either AA or MA) was counterbalanced 
such that half the time the left side had more cumulative area (i.e., 
summed over the 6 dots) and half the time the right side had more 
cumulative area. Observers were instructed to press ‘q’ if the image on 
the left had more cumulative area, and ‘p’ if the image on the right had 
more cumulative area. Observers were told the following: “Your task is 
simply to indicate which set of circles has more cumulative area. In 
other words: if you printed the images out on a sheet of paper, which 
would require more total ink?” The stimuli appeared for only 700 ms 
but there was no time limit on responses. Between each trial, there was 
a 1000 ms ITI. Observers completed 96 trials, 24 of each of 4 trial types 
(MA varying in a 1.10 or 1.15 ratio while AA was held constant; AA 
varying in a 1.10, 1.15 ratio while MA was held constant). All trials 
were presented in a unique random order for each participant. 
Observers completed two representative practice trials with feedback 
before beginning the actual task. Because over half of the trials had no 
objectively correct answer (because MA did not vary), we measured 
accuracy as a propensity to choose ‘more’ – whether that be more AA or 
more MA. 

2.2. Results 

The results are shown in Fig. 3A and B. (Per our pre-registered ex-
clusion criteria, trials with RTs greater than 10 s were excluded from 
analyses.) Observers were indeed more accurate in making dis-
criminations on the basis of AA rather than MA. A repeated-measures 
ANOVA conducted on accuracy with two factors (condition: AA vs. MA; 
ratio: 1.10 and 1.15) revealed main effects of both condition (F 
[1,97] = 4.55; p = .04) and ratio (F[1,97] = 21.98; p  <  .001), as well 
an interaction between the two (F[1,97] = 4.20; p = .04). Post-hoc 
tests revealed that overall performance was above chance in the AA 
condition for both ratios (1.15: t[97] = 6.16, p  <  .001; d = 0.62; 

1.10: t[97] = 4.21, p  <  .001; d = 0.43). However, observers were 
unable to make discriminations on the basis of MA alone, even for the 
larger ratio (1.15: t[97] = 1.97, p = .05; d = 0.20; 1.10: t[97] = 1.26, 
p = .21; d = 0.13). A separate ANOVA conducted on response times 
revealed a small but significant (44 ms) advantage for the AA trials (F 
[1,97] = 4.82; p = .03), but no effect ratio (F[1,97] = 0.79; p = .38) 
and no interaction (F[1,97] = 0.98; p = .33). 

2.3. Discussion 

These results validate and extend previous work showing that area 
judgments are best explained by variation in ‘additive area’. Here, we 
observed a robust accuracy and response time advantage for trials that 
varied in AA as opposed to MA — even when we directly controlled 
number (and consequently equated density and convex hull). And AA 
was not just a better predictor than MA: observers were unable to 
discriminate displays that differed in MA, even at the highest ratios 
tested. This suggests that AA is not merely one dimension correlated 
with area judgments, but that it is instead the singular dimension that 
seems to capture performance on these tasks. This pattern is noteworthy 
for several reasons. First, these results lay to rest any questions about 
the relation and/or interaction between AA and number, as objective 
numerosity is set at a fixed quantity (6) across all 96 stimuli. (We note 
however that subjective numerosity may not be equated across displays; 
for more on the relation between perceived area and perceived nu-
merosity, see Yousif & Keil, 2020.) Second, these results speak to ad-
ditional dimensions that have been discussed in the approximate 
number literature (see, e.g., Leibovich et al., 2017) but were not ad-
dressed in the original study (Yousif & Keil, 2019). Third, these results 
more generally suggest that the AA effect is robust across a great deal of 
variation in stimulus design (as the parameters here differed slightly 
from those used in the original study). Fourth, these results suggest that 
the effect of AA is robust even at smaller ratios; observers achieve 67% 
accuracy for ratio differences as small as 15%. This is important in 
practice because number, MA, and AA are only mathematically dis-
sociable to about this extent — yet clearly this amount of variability is 
consequential. Fifth, the lack of an effect of MA suggests that equating 
this dimension — by far the most common practice in hundreds of 
approximate number studies — is insufficient to account for the percept 

Fig. 2. Example displays from Experiment 1a (A and B) and Experiment 1b (C and D). Panels A and C depict trials in which true area is equated across the two 
displays. However, additive area is 15% greater in the stimuli on the right. Panels B and D depict trials in which additive area is equated across the two displays. Here, 
mathematical area is 15% greater in the stimuli on the left. The stimuli appear here exactly as they would have to observers in the task. Additive area in each case is 
equal to the sum of the objects' height and width. For circles, additive area for each shape is equal to twice the diameter. 
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of spatial extent gathered in area judgments. Finally, these results raise 
the prospect that perceived area (here operationalized as AA) is a 
confound in prior studies on approximate number; indeed, this con-
found may actually explain some well-known results (as demonstrated 
in Yousif & Keil, 2020). 

3. Experiment 1b: equating number (10 items) 

Experiment 1a used stimuli with a relatively small number of dots (6 
per display). This number of items is smaller than many studies on 
number perception, and is close to subitizing range (in which their 
numerosity would be automatically rather than approximately per-
ceived; e.g., Kaufman et al., 1949). Here, we directly replicated the 
findings of Experiment 1a except with slightly more numerous displays 
(i.e., 10 dots per display as opposed to 6). 

3.1. Method 

This experiment was identical to Experiment 1a except as otherwise 
noted. 100 new observers participated (1 excluded for failing to com-
plete the task). To accommodate the increased number of dots, the 
minimum and maximum dot sizes were decreased; as a result, the dots 
ranged from 15 to 95 pixels in diameter. 

3.2. Results 

The results are shown in Fig. 3C and D. Observers were indeed more 
accurate in making discriminations on the basis of AA rather than MA. 
A repeated-measures ANOVA conducted on accuracy with two factors 
(condition: AA vs. MA; ratio: 1.10 and 1.15) revealed a main effect of 
condition (F[1,98] = 27.63; p  <  .001) but not ratio (F[1,98] = 0.84; 

p = .36), as well an interaction between the two (F[1,98] = 4.09; 
p = .046). Post-hoc tests revealed that overall performance was above 
chance in the AA condition for both ratios (1.15: t[98] = 7.00, 
p  <  .001; d = 0.70; 1.10: t[98] = 6.20, p  <  .001; d = 0.62). 
However, observers were unable to make discriminations on the basis 
of MA alone, even for the larger ratio (1.15: t[98] = 1.79, p = .08; 
d = 0.18; 1.10: t[97] = 1.59, p = .12; d = 0.16). A separate ANOVA 
conducted on response times revealed no significant differences (con-
dition: F[1,98] = 1.94; p = .17; ratio: F[1,98] = 0.01; p = .91; in-
teraction: F[1,98] = 2.59; p = .11). 

3.3. Discussion 

This experiment replicates the findings of Experiment 1a, demon-
strating once again the AA and not MA best captures area judgments. 
Simultaneously, the increased number of dots in each stimulus ensures 
that the present effects cannot be explained by the stimuli's proximity to 
subitizing range. 

4. Experiment 2: squares vs. diamonds 

In the previous experiments, we compared AA against ‘true’, or 
‘mathematical’ area. However, this may be an unfair comparison. We 
have long known that area perception is not veridical. Originally pro-
posed over fifty years ago, ‘scaling’ models of area perception suggest 
that perceived area is equal to ‘true’ area scaled with an exponent of 
~0.7 (e.g., Ekman & Junge, 1961; Stevens & Guirao, 1963;  
Teghtsoonian, 1965). In some ways, AA and scaling models make si-
milar predictions. For example, both models predict that one shape 
with twice as much area as another will be perceived as having less than 
that amount. However, these models differ in how they try to explain 

Fig. 3. Results from Experiment 1a (A and B) and Experiment 1b (C and D). Panels A and C depict the proportion of trials for which observers select the option with 
‘more’ – whether that was more true area or more additive area — for each of the four additive area/true area ratios tested. The dashed lined represents at-chance 
performance. Panels B and D depict response times for each of the seven ratios tested. In all graphs, the x-axis represents the ratio. While additive area varied, true 
area remained constant. While true area varied, additive area remained constant. Thus, blue correspond to additive area trials, red bars correspond to true area trials. 
Error bars represent ± 1 SE. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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this non-veridical effect. We propose that this distortion occurs because 
the visual system is unable to integrate the horizontal and vertical di-
mensions; in contrast, scaling models offer no mechanistic account of 
area perception. So, here, we test what should be one straightforward 
prediction of scaling models, regardless of the precise value of the ex-
ponent: that two shapes of equal area are perceived as being equal. To 
test this hypothesis, we compare squares vs. symmetrical diamonds 
(i.e., rotated squares). However, mirroring the design of the previous 
study, we still use sets of shapes rather than individual shapes. Al-
though we do not hold numerosity constant across displays, numerosity 
is held constant across conditions. If scaling models are correct, then we 
should not expect that the perceived area of squares and diamonds 
differs. Therefore, if we do observe a difference between diamonds and 
squares, we have reason to doubt such models — and more reason to 
embrace models such as AA that can explain such illusions. 

4.1. Method 

This experiment was identical to Experiment 1 except as otherwise 
noted. 100 new observers participated. 1 observer was excluded for 
failing to complete the task. Unlike the previous experiment, we used 
squares instead of circles (see Fig. 4). This is solely because squares can 
be rotated, creating objects (i.e., diamonds) with a different vertical and 
horizontal extent that are otherwise equal in MA. Unlike the previous 
experiment, AA and MA differed in two slightly larger ratios (1.15 and 
1.25 vs. 1.10 and 1.15); there were also trials that varied in neither AA 
nor MA. These trials in which neither MA nor AA varied were included 
as a clean test case for whether diamonds are perceived as having more 
area than squares. Note that we calculated AA as if the shapes were 
squares. In other words, all AA calculations assume that the shapes 
were in the same canonical orientation; we rotated the squares only 
after these variables were calculated for each display. 

Trials were divided into two distinct types: ones in which the 
squares had ‘more’ (whether more AA or more MA) and ones in which 
the diamonds had ‘more’ (whether more AA or more MA). Every 
comparison was between a stimulus array with all squares and a sti-
mulus array with all diamonds. There were 40 unique trials of each trial 
type (5 different ratios × 8 instances of each ratio), resulting in a total 
of 80 trials. Note that the parameters of the diamonds-more trials and 
the squares-more trials were also equated; i.e., number and other 

Fig. 4. An example display from Experiment 2. Here, both displays have equal additive area and equal mathematical area (if we calculate additive area as if all 
objects were squares). 

Fig. 5. Results from Experiment 2. The proportion of trials for which observers 
select the option with ‘more’ – whether that was more true area or more ad-
ditive area — for each of the five additive area/true area ratios tested. The data 
here are broken down by trials in which diamonds had more (A), squares had 
more (B), and the difference scores between these two trial types (C). In (C), 
note that values below the x-axis correspond to a diamond preference. The 
dashed lined represents at-chance performance. 

S.R. Yousif, et al.   Cognition 205 (2020) 104439

6



stimulus dimensions should be equated across these trial types, and the 
only difference across the two trial types is whether the squares were 
rotated. 

4.2. Results 

The results are shown in Fig. 5. First, we separately analyze the 
trials in which diamonds had more area and trials in which squares had 
more area. The basic AA effect replicates for both trial types. In both 
cases, observers were more likely to choose displays which had more 
AA than MA (collapsing across ratio; diamonds-more: t(98) = 7.64, 
p  <  .001, d = 0.77; squares-more: t(98) = 8.21, p  <  .001, d = 0.83). 
For the trials in which diamonds had more area, observers were not 
above chance selecting the display with true area (t(98) = 1.57, 
p = .12, d = 0.16) even at the higher ratio (1.25; t(98) = 1.51, 
p = .13, d = 0.15). For the trials in which squares had more area, 
observers were actually below chance selecting the display with true 
area (collapsed across ratios; t(98) = 2.41, p = .018, d = 0.24). The 
reason for this below-chance performance is that observers had a ten-
dency to select diamonds for all the area ratios we tested; collapsed 
across ratios, there was a significant tendency to choose the stimulus 
with diamonds instead of squares (t(98) = 3.31, p = .001, d = 0.33). 
Notably, this difference was most pronounced for trials in which both 
AA and MA were equal (t(98) = 4.29, p  <  .001, d = 0.43); these trials 
therefore offer a clear test case of this diamond preference. 

4.3. Discussion 

This experiment put one of the critical predictions of ‘scaling’ 
models of area perception to the test: that shapes of equal area should 
be perceived as equal. Surprisingly, even a simple manipulation like 
rotating a square 45 degrees is sufficient to induce a relatively large 
illusion of area; observers were more than 10% more likely to indicate 
that the diamonds had more area than the squares when the two were 
equal. This pattern of results makes sense in light of the AA model. The 
critical insight of this perspective is that the perceptual system is in-
dependently perceiving (and summing) the spatial dimensions of an 
object. But how does the visual system decide which dimensions should 
be added together? The purpose of this paper is not to definitively 
answer this question. However, we expected that the vertical and 
horizontal axes may be prioritized, as in other known illusions of space 
(oblique effect; Li et al., 2003; Yousif, Chen, & Scholl, 2020). If true, we 
may expect that diamonds would be perceived as larger than equivalent 
squares (given that the diagonal is longer than the side length) — and 
that is exactly what we find. 

However, the purpose of this experiment was not to test a positive 
prediction of the AA model, but to test a prediction that scaling models 
of area perception must make (i.e., that squares and diamonds should 
be perceived as equal in area). At the least, these results demonstrate 
that the visual system's percept of area is easily fooled, even by ex-
ceedingly simple manipulations. Once again, these findings are con-
sistent with AA but inconsistent with any other current model of area 
perception (to our knowledge), including scaling models. 

5. General discussion 

In two experiments, ‘additive area’ was uniquely capable of ex-
plaining perceived area. In Experiment 1, we showed that AA explains 
area judgments even when we carefully control other stimulus dimen-
sions (like number, density, and convex hull). These findings are 
especially important for understanding how area perception relates to 
number perception (a relationship that, in our view, has been mis-
understood by failing to account for perceived area). In Experiment 2, 
we tackled the issue of area perception more directly by testing one of 
the critical predictions of ‘scaling’ models of area. We showed that 
merely rotating squares 45 degrees dramatically increases their 

perceived area. While these findings do not prove that AA is the only 
possible model, they cast doubt on the very premise of scaling models. 
In other words, we think these results collectively demonstrate that AA 
is the only current model capable of explaining the observed behavior. 
Given this — and the sheer magnitude of the illusion, in this work and 
elsewhere — we believe AA merits further inquiry (see also Yousif 
et al., under review; Yousif & Keil, 2020). 

5.1. Other models of area perception 

In our first experiment, we compared the AA model against the most 
obvious alternative a priori: that area perception is veridical. The data 
here and in other work suggest rather conclusively that AA captures 
area judgments better than at least this one alternative model (i.e., true, 
mathematical area). In principle, though, there could be an infinite 
number of possible models of area perception; how do we know that 
this one is the right one? One of the key aspects of our design is that we 
not only compare AA vs. MA but that we also control AA directly. In 
other words, we have trials that vary along other dimensions but are 
held constant for AA. Our view makes a strong, specific prediction: so 
long as AA does not vary, area discrimination performance should not 
vary — and that is exactly what we find. In this way, we have reason to 
believe that AA is not merely a model that performs well, but that it 
very closely approximates our true percepts. 

Nevertheless, it is useful to compare the AA model against other 
models that have been proposed. In our second experiment, we speci-
fically addressed ‘scaling’ models of area perception (e.g., Ekman & 
Junge, 1961; Stevens & Guirao, 1963; Teghtsoonian, 1965). In other 
words, if the true area of a stimulus is X, the perceived area of a stimulus 
is X raised to the power of 0.7. This view is generally consistent with 
ours: we also propose that perceived area scales non-linearly with true 
area. Therefore, this becomes a question of which model is correct at 
the margin (as they will often predict similar behavior). While we have 
already addressed these models empirically, let us also approach them 
in principle. One issue with scaling models is that they are based on 
area judgments of single objects; it remains unclear how these models 
should be applied to sets of objects. For example, scaling models fail to 
explain exactly how scaling occurs (i.e., over what units scaling oper-
ates; items vs. sets). If we assume that area is scaled for each item, then 
scaling models are largely indistinguishable from the AA model, which 
is essentially equivalent to a scaling model with an exponent of 0.5 
(although this is not true for all shapes; these two models could be 
dissociated for rectangles, for example — or by using rotated shapes as 
we do in Experiment 2). If we instead assume that scaling happens over 
the entire set, then we can look to the present data for answers. If 
perceived area was equal to X raised to the power of 0.7, for example, 
then we should nevertheless predict above-chance performance on 
trials when AA is controlled and MA varies. We should also predict at- 
chance performance when AA varies and MA is controlled. Neither of 
these things proved to be true. 

Furthermore, from a purely computational perspective, AA is a more 
efficient method than a scaling model with an exponent of 0.5. Whereas 
the scaling model would involve at least three distinct steps of com-
putation (multiplication, scaling, addition), the AA model involves only 
one (addition). In this way, the AA model is also consistent with some 
basic perceptual illusions (see Experiment 2 here; see also Carbon, 
2016). We believe that the starting point for understanding area per-
ception should be to consider the visual system's inability to integrate 
multiple dimensions — and to consider the most basic mathematical 
operations that can be performed over those dimensions. Because the 
AA model is better equipped to explain perceptual illusions like the 
‘folded paper size illusion’ (an illusion we encourage readers to ex-
perience for themselves!), we believe the AA model is more viable than 
both ‘true area’ models and ‘scaling models’. 

Finally, suppose that perceived area is equal to true area scaled to 
some exponent and we make no predictions about what that exponent 
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should be. Virtually any data could be ‘explained’ by such models. The 
challenge, of course, is that such models fail to account for basic illu-
sions of area/volume perception (as Experiment 2 demonstrates rather 
plainly). But the debate between these models is not so much about the 
answer as it is about how we arrive there. In other words, we care about 
the mechanism by which we perceive area, regardless of how we can 
best mathematically capture behavior. Our work emphasizes the per-
ceptual system's inability to properly integrate multiple dimensions (as 
opposed to merely ‘counting pixels’ or ‘scaling’ the visual input; see also  
Carbon, 2016). In this way, we think the distinction between these two 
models speaks to a fundamental constraint on our visual system. 

In short, ‘additive area’ uniquely accounts for impressions of visual 
area — outperforming other models of area perception, even when we 
increasingly constrain the stimulus spaces to minimize the influence of 
other dimensions. These findings further emphasize the importance of 
AA when studying both area and number perception. More generally, 
the results here speak to a fundamental question: how is it that we (mis) 
perceive our spatial world? These results strongly suggest that ‘additive 
area’ may be a definitive — and valuable — model of area perception. 

Data 

The data for this project are available here: https://osf.io/njmkg/. 
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