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A foundational question in the study of any mental 
process concerns the format of the underlying repre-
sentation on which that process depends. In our daily 
use of computers, for example, file formats shape our 
digital interactions: whether we use a .doc file or a .pdf 
file affects how we interact with that information, what 
metadata are stored about that information, and what 
other processes (i.e., programs) can act on that infor-
mation. Similarly, the format of mental representations 
informs where and how those representations are 
instantiated, whether they are domain general or 
domain specific, and what kinds of information the 
mind most naturally represents in the first place. Here, 
we address this question in the context of spatial rep-
resentation: Using a simple, novel approach, we 
revealed the latent format of our most basic visuospatial 
representations.

Spatial representations are foundational to a diverse 
array of cognitive processes that are important for aes-
thetics (Palmer et al., 2013), for representing numbers 

(Dehaene et al., 1993; Zorzi et al., 2002), for working 
memory (e.g., Pertzov & Husain, 2014), and even for 
reasoning about social relationships (Parkinson & 
Wheatley, 2013). Yet spatial behavior is not always pre-
cise: Observers invariably make errors even in straight-
forward spatial tasks (Hubbard, 2018; McCloskey 
et al., 1995). For example, in simple spatial-memory 
tasks, observers tend to remember things as having 
been closer to the quadrant in which they originated 
(Huttenlocher et  al., 1991; Yousif et  al., 2020). And 
when recalling and perceiving oriented lines, observers 
make larger errors with diagonal lines compared with 
horizontal or vertical lines (Appelle, 1972; Li et al., 2003; 
Olson, 2013). These effects are only a few of many 
spatial biases, ranging from illusions of 2D area (e.g., 
Coren & Girgus, 1978; Yousif & Keil, 2019), to navigation 
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errors in 3D environments (Warren et al., 2017; Yousif & 
Lourenco, 2017), to misperceptions of an object’s center 
of mass caused by a conflation of 2D and 3D forms 
(Firestone & Keil, 2016). Many of these errors remain 
relatively mysterious, although they sometimes speak to 
the nature of underlying spatial representations (e.g., 
McCloskey & Palmer, 1996; Müller & Wehner, 1998). Here, 
we exploited these spatial biases: We asked whether such 
mislocalizations hint at the format of the underlying 
representation.

Current Study

In several experiments, observers completed a visual-
matching paradigm in which they saw one image (com-
prising arrangements of shapes or dots within shapes) 
in a corner of the screen and a corresponding image in 
the opposite corner of the screen (comprising the same 
arrangement of shapes but sometimes scaled up or down 
in size). Observers were then instructed to place a miss-
ing shape so that the relative locations of the objects in 
that image exactly matched the relative locations of the 
objects in the other image (see Figs. 1 and 2).

The core conclusions of this article rest on an analysis 
of observers’ errors. In short, we measured the correla-
tion between the errors in different dimensions of space 
(e.g., x vs. y for Cartesian coordinates, angle vs. distance 
for polar coordinates). If observers represent space via 
any 2D coordinate system, and the system is efficient, 
those two dimensions should be orthogonal. We pro-
pose, therefore, that errors in those two dimensions 
should also be orthogonal (for an example of this kind 

of analysis, see Bays et  al., 2011). In other words, if 
observers represent space via Cartesian coordinates, we 
expect that their errors in this coordinate system would 
be independent, or uncorrelated. Similarly, if observers 
represent space via Cartesian coordinates, we expect 
that errors in other coordinate systems (e.g., polar coor-
dinates) would be dependent, or correlated.

We first validated this kind of analysis by running a 
simulation in specific coordinate systems (see Experi-
ment 0 on our OSF page at https://osf.io/tnhez). Here, 
we simulated the task—with parameters such as aver-
age accuracy set to match that of human participants—
with models that operate in either Cartesian or polar 
coordinates. These simulations demonstrated how the 
analyses may succeed in principle. Following this, we 
conducted four experiments showing that human 
observers spontaneously use polar coordinates (Experi-
ments 1a–1c and 2a). We then showed that, despite this 
default tendency, humans are capable of flexibly oper-
ating in other coordinate systems when various levels 
of spatial structure are imposed on the task environ-
ment (Experiments 2a–2c).

Experiments 1a to 1c: Spontaneous 
Use of Polar Coordinates

What is the format of human spatial representation? In 
three experiments, observers completed the same kind 
of visual-matching task that we simulated in Experiment 
0 (see https://osf.io/tnhez). In opposite corners of the 
screen, there were matched sets of three shapes—a blue 

[The Original
Set of Shapes]

[The To-Be-Matched
Set of Shapes]  

Fig. 1.  A schematic of the method. Observers saw a set of shapes 
(here a triangle, circle, and square) in one corner of the screen and 
either one or no shapes in the other corner. Their task was to place 
the missing shapes so that their relative positions matched those in 
the complete set. In this example, the relative spatial relations of the 
set in the bottom right are scaled up by a factor of 2. The dashed 
lines indicate objects that were not initially present in the display 
and had to be placed by the observer.

Statement of Relevance 

What is the format of the underlying representation 
that supports a mental process? This is perhaps 
the most foundational question that we can ask in 
any domain—a core goal shared by developmental 
psychologists, cognitive scientists, and neuroscientists. 
Just as file formats shape our digital interactions 
(e.g., whether we use a .doc file or a .pdf file has 
implications for how we interact with that information, 
what metadata are stored about that information, and 
what other processes can act on that information), 
the format of mental representations is crucial for 
understanding how complex mental processes are 
realized in the mind (and how various mental processes 
interact with one another). This article addresses this 
fundamental question of format. Here, we provide 
evidence that visuospatial representations operate 
spontaneously, but flexibly, in polar space (as opposed 
to Cartesian space and other plausible spaces).

https://osf.io/tnhez
https://osf.io/tnhez
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circle, a red square, and a green triangle. At first, one 
of the sets contained either none or one of the three 
original shapes (depending on the experiment; see 
below). Observers had to place the missing shapes so 
that the relative spatial relationships matched those of 
the set in the opposite corner. Preregistrations for these 
experiments are available at https://osf.io/tnhez. The 
experiments were approved by the Yale University Insti-
tutional Review Board.

Method: Experiment 1a

Observers.  Sixteen naive observers from the Yale com-
munity completed the experiment in exchange for course 
credit. This preregistered sample size was chosen before 
data collection began and was fixed to be identical for 
each of the in-lab experiments reported here.

Apparatus.  The experiment was conducted with custom 
software written in Python with the PsychoPy libraries 
(Peirce et al., 2019). Observers sat without restraint approx-
imately 60 cm from a 43° × 25° display. All spatial extents 

reported below are computed on the basis of this 
distance.

Stimuli.  The display on each trial consisted of two sets 
of shapes; each set contained three unique shapes  
(a blue circle, a red square, and a green triangle; each 
with a thin black border) on a gray background (50% 
white, 50% black). The two sets appeared in opposite 
corners of the display (counterbalanced so that both sets 
appeared in each corner an equal number of times). The 
center of each set of shapes was set to be 5.60° horizon-
tally and vertically from the center of the display. The 
position of each shape within the set was randomly 
determined so that, for the smaller set, a point could 
appear within 2.24° horizontally and 2.24° degrees verti-
cally of that set’s center. For the larger set, the locations 
were matched so that they were exactly twice the dis-
tance from their respective center (meaning that points 
could appear anywhere within 4.48° horizontally and 
vertically of the set’s center). Random generation of loca-
tions was constrained so that no two shapes could appear 
within 1.25° of one another (from one object’s center to 

Experiment 1a:
Place Two Shapes 

Experiment 1b:
Place Three Shapes 

Experiment 1c:
Place Two Shapes, No Scaling

Experiment 2a:
Place Three Shapes, No Scaling

Experiment 2b:
Place One Shape, Bounding Square

Experiment 2c: 
Place One Shape, Grid

a b c

d e f

Fig. 2.  Schematics of (a) Experiment 1a, (b) Experiment 1b, (c) Experiment 1c, (d) Experiment 2a, (e) Experiment 2b, and (f) Experiment 
2c. Items presented here are approximately but not exactly to scale.

https://osf.io/tnhez
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another) for the smaller set and double that distance for 
the larger set. The smaller shapes were set to have a 
radius of .36°, and the larger shapes were set to have a 
radius of .72° (here, radius means the distance from the 
center of the shape to the point along its edge farthest 
from that center). A different set of randomly generated 
locations was used for each observer. One set of shapes 
(the smaller set on half of trials and the larger set on the 
other half, presented in separate blocks that were coun-
terbalanced across observers as described below) was 
initially missing two of the three shapes (counterbal-
anced across trials so that each shape was missing an 
equal number of times in each block). No other informa-
tion was visible on the screen at any point. A representa-
tive trial can be seen in Figure 1 (see also Fig. 2a).

Procedure.  On each trial, observers simply had to place 
the missing shapes to match the relative location of their 
corresponding shapes by moving and then clicking the 
mouse. The missing shape appeared after a mouse click, 
at which point observers could click additional times or 
drag and drop the dot to change its location. When 
observers were satisfied with the missing object’s loca-
tion, they pressed a key to submit their response. If a 
response was recorded, then the display was replaced 
with a blank screen for a randomly chosen interval of 0.5 
s to 1.5 s, after which the next trial began. If no response 
was recorded within 14 s, then a warning to respond 
more quickly appeared for 5 s before the next trial began, 
and that trial was randomly shuffled back into the trial 
sequence. When that trial was reached, it would use the 
same set positions (i.e., the quadrants where the sets 
were located), but a different set of random locations 
would be generated for the objects themselves (i.e., the 
shapes would appear in different locations relative to one 
another).

Design.  Each observer completed 192 trials, divided 
into two equal blocks: 96 small-to-large trials (i.e., with 
the initially missing object in the larger set) and 96 large-
to-small trials (i.e., with the initially missing object in the 
smaller set). Between the two blocks, a message appeared 
encouraging observers to rest briefly before continuing. 
Observers completed four representative practice trials 
(the data from which were not recorded) before begin-
ning the task.

Results: Experiment 1a

To assess representational format, we first calculated 
the absolute error (i.e., ignoring the direction of the 
error) for each observer and each trial in each of the 
four relevant dimensions (x, y, angle, and radial dis-
tance) relative to where the point should have been. 

For example, if the original point was at [2, 2], but the 
second set of shapes was scaled up in size by a factor 
of 2, we would calculate error relative to the point [4, 
4]. (This is an example of scaling in Cartesian coordi-
nates, but the same logic would apply to polar coordi-
nates.) We then correlated the dimensions of each 
coordinate system with each other. We then averaged 
those correlations across individuals and asked whether 
that average was significantly different from zero.

The coordinate system was always imputed relative 
to the initially present object. For these analyses, there-
fore, we calculated a correlation for each person for 
each point (the first one placed vs. the second one 
placed) and then averaged those correlations before 
asking whether they significantly differ from zero. Note, 
however, that all of the results below replicate if we 
analyze only the first point observers placed or only 
the second point.

The results from this experiment can be seen in 
Figure 3 and Table 1. As shown in the table, Cartesian 
errors were reliably correlated (mean r = .19, 95% con-
fidence interval, or CI = [.12, .27]), t(15) = 5.68, p < .001, 
d = 1.42, 95% CI for d = [0.71, 2.11], and polar errors 
were reliably uncorrelated (mean r = .02, 95% CI = 
[−.02, .05]), t(15) = 1.11, p = .28, d = 0.28, 95% CI for 
d = [−0.23, 0.77]. The difference between these two 
values was also significant, t(15) = 6.47, p < .001, d = 
1.62, 95% CI for d = [0.85, 2.36]. We can also analyze 
whether noncanonical dimensions are correlated as we 
would expect them to be. And, indeed, for all of the 
noncanonical coordinate systems we tested, there was 
a positive correlation (p < .001; see Table 1).

Four factors strengthen the meaningfulness of this 
null result. First, we always pair a predicted null result 
in one dimension with a predicted positive result in 
another; in other words, we are more confident that a 
null result for polar coordinates is meaningful because 
Cartesian coordinates yield a positive result. Second, 
we demonstrated via simulation (in Experiment 0; see 
https://osf.io/tnhez) that this analysis functions cor-
rectly under known conditions. Although we cannot 
perfectly simulate human behavior, these simulations 
were conducted in a way that mimicked human behav-
ior (e.g., by matching average error along multiple 
dimensions). Third, we can ask about other predictions 
that this view must make. For example, if polar coor-
dinates are implemented in the human mind, then we 
should expect that any coordinate system not in use 
should have correlated errors. Whereas the Cartesian 
system makes for an obvious comparison, there are an 
infinite number of noncanonical dimensions that we 
can assess. Most straightforwardly, errors in the angle 
and x dimensions should be correlated with one 
another, as well as radial distance and y dimensions, 

https://osf.io/tnhez
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and so on. These correlations are presented along with 
the other relevant correlations in Table 1; as can be 
seen, these noncanonical dimensions are correlated as 
one would expect (p < .05). (As with the analyses 

above, these p values were derived from a one-sample 
t test conducted on the correlation values for each 
observer; we were asking whether, on average, these 
correlations differed from zero.)
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Fig. 3.  Results from Experiment 1a. The average correlation for Cartesian and polar errors (a) is broken down by point. (The lighter 
bars correspond to individual points; the darker bars correspond to the average of those values.) Cartesian correlations are depicted in 
blue; polar correlations are depicted in red. Error bars represent ±1 SE. The difference in correlation (b) is shown for each observer. 
Bars to the right of the y-axis indicate a greater correlation for Cartesian dimensions than polar dimensions. For additional information 
and statistics about these correlation values, see Table 1.

Table 1.  Correlations and Significance Values From Experiments 1a to 1c

Dimension

Experiment 1a Experiment 1b Experiment 1c

r p r p r p

Primary dimensions
  Cartesian .19 < .001 .12 < .001 .20 < .001
  Polar .02 .283 -.00 .710 .08 .006
  Difference .17 < .001 .12 < .001 .12 < .001
Other dimensions
  x/angle .30 < .001 .20 < .001 .51 < .001
  x/distance .67 < .001 .66 < .001 .56 < .001
  y/angle .29 < .001 .25 < .001 .43 < .001
  y/distance .66 < .001 .66 < .001 .55 < .001
Rotated Cartesian dimensions
  5° .20 < .001 .18 < .001 .19 < .001
  15° .21 < .001 .20 < .001 .19 < .001
  25° .22 < .001 .22 < .001 .20 < .001
  35° .21 < .001 .24 < .001 .22 < .001
  45° .21 < .001 .24 < .001 .24 < .001

Note: “Primary Dimensions” are the most important. The actual numerical difference in the 
correlation is shown in the “Difference” row; the p value corresponds to the output of the 
one-sample t test conducted on those difference scores. “Other Dimensions” are correlations 
between various existing dimensions. “Rotated Cartesian Dimensions” are unique coordinate 
spaces that were created for the purposes of these analyses. Here, we took ordinary Cartesian 
space and rotated it by 5°, 15°, 25°, 35°, or 45° to create new coordinate systems. The aim 
here was to demonstrate that the lack of correlation for polar coordinates is special—as all 
other combinations of dimensions yield positive correlations.
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Fourth, we can ask about other nonexistent dimen-
sions. For example, it is possible in theory to represent 
2D space in a Cartesian-esque format that is rotated, 
for example, 5° clockwise, 15° clockwise, and so on. 
In other words, we imagined a Cartesian space that was 
rotated 5°; we then recalculated the coordinates for 
every error as if they existed in this nonexistent space. 
Then, we asked whether these nonexistent dimensions 
properly yield positive correlations—and, indeed, they 
do (p < .001). The p values of these average correlations 
are also plotted in Table 1 (as rotated Cartesian dimen-
sions). Therefore, polar representations seem to under-
lie human errors, as errors in polar coordinates seem 
to be uniquely uncorrelated—compared not only with 
Cartesian coordinates but also with other noncanonical 
2D spaces.

Method: Experiment 1b

This experiment was identical to Experiment 1a, except 
as noted. Sixteen new observers participated; this pre-
registered sample size was chosen to match that of 
Experiment 1a. In this experiment, three shapes (as 
opposed to two) were initially absent from one of the 
sets (see Fig. 2b). Observers had to place all three 
shapes back on each trial. To guide them, we placed a 
single black dot in the center of the three shapes (for 
both sets of shapes). Observers did not know which 
object would appear first when they clicked for the first 
time (although the objects always appeared in the same 

order: blue circle, green triangle, red square). After they 
clicked, they could see the object and then adjust as 
needed. Observers could press the space bar to lock in 
the location of the first object, at which point clicking 
again would cause another shape to appear. They could 
then adjust the location of that object in the same way. 
This continued until all three objects were placed and 
the observer locked in their final response.

Results: Experiment 1b

The analyses for this experiment were identical to the 
analyses of Experiment 1a, except that there were more 
points to analyze because observers placed three objects 
on each trial instead of two. To simplify these analyses, 
we present the average values for all three points. How-
ever, the results are qualitatively identical for each of 
the three points (as is readily apparent in Fig. 4). The 
placement error for each object on each trial was always 
analyzed relative to the central anchor dot.

The results from this experiment can be seen in Fig-
ure 4 and Table 1. As shown in the table, Cartesian 
errors were reliably correlated (mean r = .12, 95% 
CI = [.07, .16]), t(15) = 5.44, p < .001, d = 1.36, 95% CI 
for d = [0.66, 2.04], and polar errors were reliably uncor-
related (mean r = −.00, 95% CI = [−.03, .02]), t(15) = 
0.38, p = .71, d = 0.10, 95% CI for d = [−0.59, 0.40]. The 
difference between these two values was also signifi-
cant, t(15) = 4.55, p < .001, d = 1.14, 95% CI for d = 
[0.49, 1.76]. As with the previous experiment, we could 
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Fig. 4.  Results from Experiment 1b. The average correlation for Cartesian and polar errors (a) is broken down by point. (The lighter bars 
correspond to individual points; the darker bars correspond to the average of those values.) Cartesian correlations are depicted in blue; 
polar correlations are depicted in red. Error bars represent ±1 SE. The difference in correlation (b) is shown for each observer. Bars to the 
right of the y-axis indicate a greater correlation for Cartesian dimensions than polar dimensions; the bar to the left indicates the reverse. 
For additional information and statistics about these correlation values, see Table 1.
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also analyze whether noncanonical dimensions are cor-
related as we should expect them to be. And, indeed, 
all the noncanonical coordinate systems tested were 
positively correlated (ts > 5.40, ps < .001, ds > 1.30; 
see Table 1). Although this task served mostly as a rep-
lication of Experiment 1a, the experience of completing 
the task was quite different. The presence of only a 
central anchor point may have altered observers’ strate-
gies and suggests that the results of Experiment 1a can-
not be explained by appeal to some idiosyncratic task 
demand (and that, on the contrary, this pattern of results 
may be far more general).

Method: Experiment 1c

This experiment was identical to Experiment 1a, except 
as noted. Sixteen new observers participated; this pre-
registered sample size was chosen to match that of 
Experiment 1a. In both prior experiments, one of the 
sets was scaled to be larger than the other. Such scaling 
does not affect Cartesian and polar coordinates equally. 
When spaces are scaled in size, both the dimensions of 
Cartesian space will change (unless a point lies directly 
along an axis). However, only one of the dimensions of 
polar space will change; the angle remains constant. 
Therefore, these results might occur because polar coor-
dinates are simply a more convenient format for spatial 
translation. Here, we used an identical task but without 
the size-translation component: Observers had to match 
two identical sets of shapes. The two different sets of 
shapes were not scaled in size; instead, they were spa-
tially identical. We used exactly the same parameters as 
in Experiment 1a, except that the sizes of both sets were 
scaled up to be equal to the size of the larger set in 
Experiment 1a (see Fig. 2c).

Results: Experiment 1c

The analyses for this experiment were identical to the 
analyses of Experiment 1a. Again, to simplify these 
analyses, we present the average values for the two 
placed points. However, the results are qualitatively 
identical for each of the points (as is readily apparent 
in Fig. 5).

The results from this experiment can be seen in Fig-
ure 5 and Table 1. As can be seen in the table, Cartesian 
errors were reliably correlated (mean r = .20, 95% CI = 
[.15, .25]), t(15) = 8.63, p < .001, d = 2.16, 95% CI for d = 
[1.24, 3.06], and polar errors exhibited small correlations 
(mean r = .08, 95% CI = [.03, .13]), t(15) = 3.22, p = .006, 
d = 0.81, 95% CI for d = [0.23, 1.36]. The difference 
between these two values was significant, t(15) = 7.40, 
p < .001, d = 1.85, 95% CI for d = [1.02, 2.66]. As with 

the previous experiment, we could also analyze whether 
noncanonical dimensions are correlated as we should 
expect them to be. And, indeed, for all the noncanoni-
cal coordinate systems we tested, there was a positive 
correlation (ts > 4.40, ps < .001, ds > 1.05; see Table 1). 
The observed correlation for polar errors was driven 
largely by a single observer who was an outlier in terms 
of overall accuracy. However, we did not preregister any 
exclusion criteria for accuracy for our in-lab experi-
ments. Despite this anomaly, we note that each of the 
observers still exhibited a higher Cartesian correlation 
than polar correlation. Therefore, these results once 
again reveal evidence of spontaneous use of polar coor-
dinates to represent visual space. Here, crucially, we 
demonstrate small correlations in polar dimensions even 
when observers completed no size-translation task at 
all. This suggests that the prior results are not explained 
by an advantage of one coordinate system during spatial 
translation; however, the slight polar correlations 
observed here may suggest that the translations do 
impact behavior. This possibility was further explored 
in Experiment 2a.

Discussion: Experiments 1a to 1c

Experiments 1a to 1c demonstrate that even small errors 
made by observers in a maximally simple task contain 
a wealth of information; indeed, these errors may reveal 
the canonical format of the spatial representations. 
Experiments 1a and 1b demonstrate that observers use 
polar coordinates when scaling spaces up or down in 
size, whether they are placing them relative to one 
another or to a single, central landmark. Experiment 1c 
demonstrates that observers may use polar coordinates 
even when matching two spatially identical displays. 
Together, these three experiments provide evidence that 
observers spontaneously use polar coordinates to rep-
resent visual space.

Experiments 2a to 2c: Flexibility  
of Representation

In tasks with minimal intervening spatial structure 
(Experiments 1a–1c), observers automatically operate 
in polar coordinates. But how flexibly do people engage 
different coordinate systems across different layouts 
and reference frames? People’s use of polar coordinates 
might be highly inflexible; that is, regardless of the 
surrounding spatial environment, people will use only 
polar coordinates. Or people might spontaneously use 
polar coordinates as a default representation but may 
flexibly represent space in other coordinate systems if 
the surrounding spatial environment strongly suggests 
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a particular system. Here, we used the same spatial 
matching task as before but in environments with vary-
ing degrees of spatial structure. In Experiment 2a, we 
replicated the findings of Experiment 1; in Experiment 
2b, we imposed moderate structure in the form of a 
bounding square; and in Experiment 2c, we imposed 
strong structure in the form of a grid. Preregistrations 
for these experiments are available at https://osf.io/
tnhez. The experiments were approved by the Yale 
University Institutional Review Board.

Method: Experiment 2a—online 
replication, minimal structure

This experiment was identical to Experiment 1c, except 
as noted. Fifty new observers participated. Of the origi-
nal sample of 50, three observers were excluded for 
failing to complete the task, and a further four observ-
ers were excluded for being outliers for overall accu-
racy; this resulted in a final sample of 43 observers. 
Unlike the previous experiments, this experiment was 
conducted online via Amazon Mechanical Turk. (This 
is because these data were collected in response to a 
revision request that we received around the onset of 
the COVID-19 pandemic. Because we were no longer 
able to collect data in the lab, we opted to convert our 
experiments to operate online. This is also why we took 
care to first replicate our original findings on this new 

platform before attempting to extend them further.) 
This experiment was run using custom software written 
in JavaScript.

As much as possible, we tried to match the design of 
the original experiments online. However, because of 
uncertainty about the viewing conditions of our observers 
(given differences in Web browsers, etc.), we cannot 
know for sure the exact stimulus dimensions and so on. 
Here, observers placed three points relative to a single, 
central anchor point (procedurally identical to Experi-
ment 1b; see Fig. 2d). The only other substantive change 
we made to the task was that we had observers com-
plete only 48 trials compared with the original 192. Note 
that even though we collected fewer trials per observer, 
our sample size was also many times larger. Observers 
had 20 s to make a response before that trial was skipped 
and replaced; data from these missed trials were dis-
carded. (The preregistration for this experiment states that 
observers would have 7 s to respond before a trial was 
skipped. However, this was an error. This should have 
said that observers were given roughly 7 s per shape they 
had to place to be consistent with all the other experi-
ments. Because they were placing three shapes, they had 
20 s, rounded down from 21.) To account for increased 
noise in online data collection, we added exclusion cri-
teria at both the trial level and subject level. Any trial with 
an overall accuracy greater than 2.5 standard deviations 
from that observer’s mean was discarded; any observer 
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with an overall accuracy greater than 2.5 standard devia-
tions away from the group mean was discarded.

Results: Experiment 2a—online 
replication, minimal structure

The results from this experiment can be seen in Figure 
6a. The analyses for this experiment were identical to 
the analyses for Experiment 1b. Again, to simplify these 
analyses, we present the average values for all three 
points. However, the results are qualitatively identical 
for each of the three points. As can be seen in the fig-
ure, Cartesian errors were reliably correlated (mean r = 
.13, 95% CI = [.09, .18]), t(42) = 6.69, p < .001, d = 1.02, 
95% CI for d = [0.65, 1.39], and polar errors were reli-
ably uncorrelated (mean r = .02, 95% CI = [−.02, .06]), 
t(42) = 1.03, p = .31, d = 0.16, 95% CI for d = [−0.15, 
0.46]. The difference between these two values was also 
significant, t(42) = 6.03, p < .001, d = 0.92, 95% CI for 
d = [0.56, 1.27]. These results replicate the findings of 
Experiment 1, suggesting that the pattern of results that 
we observed in prior experiments generalizes across 
testing environments. Further, these results show that 
the lack of polar correlation was not dependent on the 
size-translation task.

Method: Experiment 2b—bounding 
square, moderate structure

This experiment was identical to Experiment 2a, except 
as noted. Fifty new observers participated; this prereg-
istered sample size was chosen to be identical to that 
of Experiment 2a. Of the original sample of 50, one 
observer was excluded for failing to complete the task, 
and a further six observers were excluded for being 
outliers for overall accuracy; this resulted in a final 
sample of 43 observers.

Whereas in the previous experiment, observers 
placed three points relative to a central anchor point, 
observers in this experiment matched the location of 
only one point within a square frame (see Fig. 2e). The 
goal of this experiment was to provide observers with 
a moderate level of spatial structure. Because observers 
were placing only a single shape (as opposed to three 
shapes), they had only 7 s to respond before a trial was 
skipped. Analyses in this experiment had to be con-
ducted relative to the center of the square.

Results: Experiment 2b—bounding 
square, moderate structure

The results from this experiment can be seen in Figure 
6b. The analyses for this experiment were identical to 

the analyses for Experiment 2a, except that observers 
placed only a single point on each trial. As can be seen 
in the figure, we observed for the first time a case in 
which Cartesian errors were uncorrelated (mean r = 
.04, 95% CI = [−.03, .11]), t(42) = 1.24, p = .22, d = 0.19, 
95% CI for d = [−0.11, 0.49], and polar errors were cor-
related (mean r = .16, 95% CI = [.10, .21]), t(42) = 6.23, 
p < .001, d = 0.95, 95% CI for d = [0.59, 1.31]. The dif-
ference between these two values was significant, 
t(42) = 2.98, p = .005, d = 0.46, 95% CI for d = [0.14, 
0.77]. This reversal is significant for two reasons: (a) 
It validates the analysis in the first place, demonstrat-
ing that this way of analyzing errors can reveal differ-
ent strategies that observers may take, and (b) it 
suggests that whereas observers may spontaneously 
use polar coordinates in environments with minimal 
spatial structure, they are capable of flexibly using 
different spatial representations when the environment 
strongly implies such representations.

Method: Experiment 2c—grid, 
maximal structure

This experiment was identical to Experiment 2b, except 
as noted. Fifty new observers participated; this prereg-
istered sample size was chosen to be identical to that 
of Experiment 2a. One observer was excluded for fail-
ing to complete the task, and a further three observers 
were excluded for being outliers for overall accuracy; 
this resulted in a final sample of 46 observers.

Whereas in the previous experiment, observers 
placed one point within a bounding square, observers 
here placed one point on top of a grid (see Fig. 2f). 
The goal here was to provide observers with a high 
level of spatial structure (meaning that, unlike in the 
prior experiments, observers had enough spatial infor-
mation to make very exact estimates of the object’s 
position—this is why we imposed a time limit on 
responses; although observers could in theory respond 
with almost perfect accuracy, this imposed time limit 
was meant to force small errors).

Results: Experiment 2c—grid, 
maximal structure

The results from this experiment can be seen in Figure 
6c. The analyses for this experiment were identical to 
the analyses for Experiment 2b. As can be seen from 
the figure, we once again observed that Cartesian errors 
were uncorrelated (mean r = .00, 95% CI = [−.05, .06]), 
t(45) = 0.14, p = .89, d = 0.02, 95% CI for d = [−0.27, 
0.31], and polar errors were correlated (mean r = .32, 
95% CI = [.27, .37]), t(45) = 12.84, p < .001, d = 1.89, 
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95% CI for d = [1.40, 2.37]. The difference between these 
two values was significant, t(45) = 7.61, p < .001, d = 
1.12, 95% CI for d = [0.75, 1.49]. Once again, these results 
demonstrate that spatial structure can meaningfully 
impact observers’ representations of space.

Discussion: Experiments 2a to 2c

In a series of three experiments, we showed how vary-
ing levels of spatial structure influence the kind of 
coordinate systems that observers use to localize 
objects. In Experiment 2a, we replicated the findings 
of Experiments 1a to 1c, demonstrating that in the 
absence of strong spatial cues, observers will spontane-
ously use polar coordinates. But in Experiments 2b and 
2c with increasing levels of spatial structure—and, in 
particular, structure that may lend itself to Cartesian-
esque representations—observers’ patterns of errors 
revealed an increasing shift toward Cartesian coordi-
nates. These results validate the previous analyses while 
revealing the boundary conditions of the use of polar 
coordinates.

Another way of thinking about the results of Experi-
ments 2b and 2c is with respect to reference frames 
(e.g., Farah et al., 1990). In Experiments 1a to 1c and 
2a, the only possible referents (or reference frame) that 
observers can use to situate the placement of new 
objects are single points in space (i.e., the already vis-
ible objects). In Experiments 2b and 2c, by contrast, 
observers have an entire bounded region (i.e., the 
square/grid) with which to situate the new object. Note 
here that our work does not imply that observers do 
or should use only one coordinate system or one refer-
ence frame. Quite the opposite; our approach is meant 
to be flexible: In principle, our analyses can be con-
ducted relative to any point in space and with respect 
to any reference frame. And, in practice, this is clearly 
the case: The fact that we observed a qualitatively dif-
ferent pattern of results in Experiments 2b and 2c sug-
gests that observers are clearly capable of representing 
space within different frames of reference.

General Discussion

We first demonstrated that analyses of errors have the 
potential to reveal a representational format when that 
representational format is known (Experiment 0; see 
https://osf.io/tnhez). We then applied this insight to six 
experiments with humans. In Experiments 1a and 1b, 
we found converging evidence of polar coordinates in 
a simple visual-matching paradigm in which no repre-
sentational format was implied. In Experiment 1c, we 
showed that these prior results cannot be explained by 
the size-translation task itself. In the following three 

experiments (Experiments 2a–2c), we explored whether 
observers flexibly use different coordinate systems 
depending on the spatial context. With high levels of 
spatial structure (i.e., imposing the spatial-matching 
task on a grid), observers’ pattern of errors suggested 
the use of Cartesian rather than polar coordinates. Col-
lectively, these results demonstrate spontaneous, but 
flexible, use of polar coordinates.

These results are far from obvious: All dimensions 
could have been consistently correlated; or none could 
have been; or contrary to what we found, Cartesian 
coordinates could have been uniquely uncorrelated. 
Yet the same pattern held across many variations of 
experiments (namely, Experiments 1a–1c and 2a), sug-
gesting a robust set of findings. That said, any one of 
these results in isolation should be interpreted cau-
tiously. We are comfortable interpreting the lack of 
correlation for polar dimensions as speaking to repre-
sentational format only because (a) this result was 
highly replicable across many observers and several 
unique experiments, (b) we were able to conduct simu-
lations indicating that this analysis could work in prin-
ciple, (c) our analyses in Experiments 2a through 2c 
revealed a change in representation in practice, and (d) 
we assessed a number of other dimensions that also 
could have been uncorrelated (yet never were).

Nevertheless, the present work depended on a single 
paradigm. Although this paradigm is revealing, future 
work may still fruitfully seek converging evidence to 
support this view. For example, we now know that 
observers are capable of flexibly swapping between 
coordinate systems depending on the context. Yet fur-
ther investigation may be able to address what specific 
context information may be sufficient to induce a 
change in representational format as well as the inter-
face between small-scale and large-scale representa-
tions (e.g., could we use this analysis to measure 
representational format in navigable environments?). 
We see the present work as a first step—one that opens 
the door to many other lines of inquiry.

Relation to prior work

These findings relate to prior studies on spatial localiza-
tion and mislocalization (Huttenlocher et  al., 1991; 
Langlois et al., 2017; Wedell et al., 2007; Yousif et al., 
2020), some of which specifically address polar coor-
dinates as a candidate for visuospatial representation 
(Huttenlocher et al., 1991; Yousif et al., 2020; see also 
Yang & Flombaum, 2018). Most notably, Huttenlocher 
and colleagues (1991) relied on similar correlation 
analyses to make claims about representational format. 
However, those results were indecisive for a few rea-
sons. First, the primary aim in their research was to 

https://osf.io/tnhez
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understand the origin of spatial biases, not to document 
the format of visuospatial representations. Second, their 
conclusions depend solely on a null result, without 
making predictions about or assessing other dimensions 
or other spatial contexts (whereas the present work 
tested many positive predictions and also tested many 
different spatial contexts). Third, they assessed dimen-
sion independence only in circular spaces (whereas we 
specifically sought to test unbounded spaces), and 
fourth, they assessed errors in memory, whereas all of 
our tasks intentionally minimized memory demands.

These results may also bear on spatial representation 
on larger scales or in 3D environments (e.g., for pur-
poses of navigation; see Moser et al., 2008, 2014). One 
relevant proposal suggests that we use a network-like 
cognitive graph for large-scale spatial systems. These 
graphs especially prioritize angle and distance informa-
tion between known locations (Ericson & Warren, 2020; 
Warren et al., 2017; but see also Gallistel, 1990; Kuipers 
et  al., 2003; O’Keefe & Nadel, 1978). Of course, this 
resembles polar coordinates, which are nothing more 
than angle and distance vectors.1 Could the same highly 
general representational format be employed in both 
small-scale (i.e., visual) and large-scale (i.e., navigable) 
environments? Future work may shed light on the con-
tinuity of these representations across scales or on the 
translation of information between small-scale and 
large-scale layouts (e.g., as when reading maps).

The approach here also relates to classic work on 
integral versus separable dimensions (Garner & Felfoldy, 
1970; for a review, see Algom & Fitousi, 2016). Tradi-
tionally, researchers investigate integrality and separa-
bility in one of two ways: either via Stroop effects or 
via speeded classification. Dimensions that interfere 
with one another would be considered integral; dimen-
sions that do not would be considered separable. The 
error-independence analyses we used here might pro-
vide a novel method for assessing integrality versus 
separability (see also Bays et al., 2011); in principle, all 
three analyses should yield converging results. That 
said, these classic paradigms would have been insuf-
ficient to address our key questions. Space is not like 
other dimensions in that any point in space could be 
simultaneously represented in an infinite number of 2D 
spaces. Because our task provides a blank slate with 
which we can simultaneously analyze all possible 
dimensions at once, it provides a unique advantage 
over earlier tasks. Stroop and speeded-classification 
paradigms, in contrast, require precommitment to the 
relevant dimensions. Nevertheless, future work may link 
our approach to the integrality-versus-separability 
approach.

On format

Throughout the article, we have focused primarily on a 
contrast between polar coordinates and Cartesian coor-
dinates (and, briefly, other noncanonical coordinate 
systems). However, this work also speaks to a possible 
contrast between the use of some coordinate system 
and no coordinate system at all. Indeed, it is possible 
that space could be represented only in coarse spatial 
terms (e.g., “that point was generally up and to the left”; 
see Huttenlocher et al., 1991). Both sets of experiments 
reported here, by contrast, suggest a reliance on a spe-
cific coordinate system. Even if participants flexibly rely 
on multiple coordinate systems, their patterns of errors 
have still revealed a fundamental regularity: Locations 
in the mind are represented as variables in a 2D vector. 
In some ways, these insights were presaged by the study 
of patient A. H., who exhibited profound localization 
deficits that often involved “mirror flipping” points in 
space (McCloskey & Palmer, 1996; McCloskey et  al., 
1995). For example, if instructed to recreate the location 
of a point offset to the left, A. H. might place a point in 
the same relative location but offset to the right instead. 
Such errors suggest that space is being represented in 
some precise format but one that can be manipulated 
(akin to flipping the sign of a variable). This work also 
suggests that space is represented via independent 
dimensions (or else it would be impossible to make an 
error in one dimension while acting precisely in 
another). The present work builds on the study of 
patient A. H. by offering—for the first time—evidence 
that the precise coordinate systems underlying visuo-
spatial representations are readily recoverable, even in 
simple psychophysical tasks.

Conclusion

We depend on our ability to accurately perceive and 
represent space; yet, naturally, our percepts and our 
representations are imprecise. Here, we have shown 
how errors in the simplest possible spatial tasks contain 
significant clues to the underlying format of our most 
primitive visuospatial representations. The present 
work lays the groundwork for considering domain-
general mechanisms that may underlie many kinds of 
spatial biases (e.g., those pertaining to location vs. 
those pertaining to orientation) across many different 
spatial scales (e.g., small-scale visual environments vs. 
large-scale navigable environments). More consequen-
tially, the present work demonstrates that the format of 
spatial representations is readily accessible to empirical 
investigation.
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Note

1. Our claim that observers may use polar coordinates is not 
meant to suggest that they represent all locations on a single, 
inflexible polar grid. We mean to suggest only that, quite the 
opposite but similar to the cognitive-graph view, observers 
spontaneously use angle–distance relations to localize objects 
relative to other objects.
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