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When you look at a basket of oranges, a glass of water, 
or a piece of cake, how do you know how much is 
there? A great deal of research has investigated the 
shared capacity of adults, infants, and nonhuman ani-
mals to estimate the number of objects in a set (Barth, 
Kanwisher, & Spelke, 2003; Brannon & Terrace, 1998; 
Gordon, 2004; Nieder & Miller, 2004; Pica, Lemer, Izard, 
& Dehaene, 2004). This propensity to estimate large 
numerosities without counting is said to rely on an 
evolutionarily ancient system: the approximate number 
system (Halberda, Mazzocco, & Feigenson, 2008). Yet 
to our evolutionary ancestors, estimates of number may 
not have been the best assessment of amount.

Imagine foraging for food. Would you decide to forage 
from the bush with twice as many berries or the one with 
berries 3 times in volume? In many natural settings, size 
estimation rather than number estimation might be most 
critical for survival, although only a few studies have 
investigated approximate area perception conjointly with 
approximate number perception (Brannon, Lutz, & 
Cordes, 2006; Lourenco, Bonny, Fernandez, & Rao, 2012; 
Odic, Libertus, Feigenson, & Halberda, 2013). In fact, 

most studies have discussed area only in an attempt to 
rule out continuous spatial dimensions (e.g., area, con-
tour length, density) as explanations for approximate 
number estimation (Barth, 2008; Mix, Huttenlocher, & 
Levine, 2002). Yet area or size perception is also an auton-
omous area of study: Models of area perception have 
been proposed in the context of development (e.g., 
Anderson & Cuneo, 1978; Gigerenzer & Richter, 1990), 
ensemble perception (e.g., Marchant, Simons, & de 
Fockert, 2013; Solomon, Morgan, & Chubb, 2011), per-
ception research more broadly (e.g., Carbon, 2016; 
Ekman & Junge, 1961; Nachmias, 2008, 2011; Teghtsoonian, 
1965), and even consumer decision making (e.g., Krider, 
Raghubir, & Krishna, 2001). Here, similarly, we demon-
strated that area estimation itself reveals powerful and 
counterintuitive effects. Yet unlike the authors of much 
of the prior work, we assessed area perception (a) in the 
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context of numerous objects and (b) using displays akin 
to those commonly used to assess approximate number 
perception (e.g., Halberda et al., 2008; Odic et al., 2013). 
We showed that even in such displays, area estimation 
employs a simple heuristic that results in substantial dis-
tortions of perceived area. These distortions are not only 
important to understand in their own right; they also raise 
questions about attempts to control for area in number-
estimation tasks. In particular, controlling for true area, 
insofar as it is dissociable from perceived area, may 
amplify a confound with numerosity in many studies.

The Additive-Area Heuristic

We propose that visual area estimation in simple visual 
displays is best captured by a single, simple heuristic: 
the additive-area heuristic. Consider Figure 1a. In which 
panel does it look like the circles cover a greater area: 
the left or the right? Although it may appear that the 
circles in the left panel cover a greater area than those 
in the right panel, the cumulative area covered by the 
circles in the two panels is equal. However, the panels 
differ in one important way: Additive area (i.e., the sum 
of a shape’s dimensions rather than the product) is 
greater for the image on the left.

Five experiments were designed with the aim of 
manipulating either true area or additive area while 
holding the other constant. We found that (a) humans 
use a simple heuristic to calculate area, (b) humans 
often fail to perceive true area when accounting for this 
heuristic, (c) this heuristic cannot be explained by 
appeal to other dimensions, and (d) differences between 
true area and perceived area may have serious conse-
quences for studies that rely on area as a manipulation 
or a control.

All of the experiments were preregistered. In addi-
tion to preregistering the sample size, basic methodol-
ogy, and analysis plans, we also preregistered some 
details about how the stimuli were created. Note, how-
ever, that some of the language in the preregistration 
is slightly different from the language in this article. 
The preregistrations are available on the Open Science 
Framework (OSF) at osf.io/dc5t8.

Experiment 1: Additive Area Versus 
True Area

In the first test of the additive-area heuristic, observers 
completed an approximate-area task on displays of cir-
cular disks (see Fig. 1a). Critically, we varied these 
displays in terms of their cumulative true area as well 
as their cumulative additive area. We predicted that 
observers would be both slower to respond and less 

accurate when true area differed and that they would 
be faster to respond and more accurate when additive 
area differed.

b

c

a

Fig. 1. Depiction of example displays from (a) Experiments 1, 2, 
and 4; (b) Experiment 3; and (c) Experiment 5. True area is equated 
for each pair in (a) and (b). However, additive area is 30% greater 
in the left panel of (a) and 30% greater in the right panel of (b). 
Perimeter is equated for each pair in (c). However, additive area is 
30% greater in the left panel of (c). The stimuli appear here exactly 
as they would have to observers in the task. Additive area in each 
case is equal to the sum of the objects’ height and width. For circles, 
additive area for each shape is equal to twice the diameter (which 
can be simplified to just diameter). For the rectangles, additive area 
for each shape is equal to height plus width. For ellipses, additive 
area for each shape is equal to height plus width (also the sums of 
the lengths of the major and minor axes).

http://www.osf.io/dc5t8
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Method

Observers. One hundred observers were recruited via 
Amazon’s Mechanical Turk (MTurk), although 3 observ-
ers were excluded because they did not complete a sin-
gle trial (i.e., they accepted but never started the task). 
All observers consented prior to participation, and the 
experiment was approved by the institutional review 
board at Yale University.

Materials. All of the stimuli were generated via custom 
software written in Python with the PsychoPy libraries 
(Peirce, 2007). The aim was to create pairs of stimuli that 
varied in either additive area or true area while the other 
was equated. For each stimulus pair, we randomly gener-
ated an initial set of disks (20–100 pixels in diameter, 
with a buffer of at least 10 pixels between any two disks) 
and then pseudorandomly generated a second set of 
objects on the basis of a given additive-area ratio. The 
initial set of objects always had seven disks. Stimulus 
pairs were generated randomly until a pair met both the 
additive-area criterion and the true-area criterion, at 
which point that pair would be rendered another time 
and saved. The second stimulus (i.e., not the set with 
seven disks) always had more area (whether additive 
area or true area) than the initial stimulus. Number was 
unconstrained in the stimulus-generation process, mean-
ing that the number ratio was not equated across all pos-
sible additive-area and true-area ratios (1.5 on average 
for additive-area trials; 0.8 on average for true-area trials). 
For details on how additive area, true area, and number 
covaried, see the “Stimulus Details” files on the OSF (osf 
.io/dc5t8). All disks were rendered with a thin, black bor-
der (4-pixel stroke width). The images depicted in Figure 
1 are representative, as they were actual images used in 
the experiments.

In this initial experiment, there were only two con-
straints: additive area and true area. There were pairs 
in which true area was equal (to serve as a baseline), 
pairs in which true area varied and additive area was 
controlled, and pairs in which additive area varied and 
true area was controlled. When additive area was con-
trolled, true area could vary in a 1.00, 1.10, 1.20, or 1.30 
ratio (and vice versa for additive area when true area 
was controlled). Because there are mathematical con-
straints on how much additive area and true area can 
differ, these ratios were selected to maximize the dif-
ferences between them. Because of the pseudorandom 
nature of stimuli creation and the mathematical con-
straints involved in creating such stimuli, true area was 
never perfectly matched with the stated ratio; it could 
vary by 1% in either direction. That is, if the true-area 
ratio for a given trial were 1.10, we allowed the differ-
ence in true area to fluctuate between 1.09 and 1.11.

Procedure. The task was administered online via MTurk 
using custom software. On each trial, observers saw two 
spatially separated sets of lavender-colored dots, pre-
sented side-by-side in the center of the screen, with 50 
pixels of space between each set. Each stimulus was 400 
pixels × 400 pixels. The side that contained the set with 
more cumulative area (left vs. right) was counterbal-
anced. Observers were instructed to press “q” if the image 
on the left had more cumulative area and “p” if the image 
on the right had more cumulative area. Observers were 
told the following: “Your task is simply to indicate which 
set of circles has more cumulative area. In other words: 
if you printed the images out on a sheet of paper, which 
would require more total ink?” Later, they were told, “The 
sets of dots will sometimes vary in number, but the num-
ber of dots does not matter. Instead, you should answer 
only which has more area, regardless of number.” The 
stimuli stayed on the screen until the observer responded, 
and there was no time limit on responses. Between each 
trial, there was a 1,000-ms intertrial interval. Observers 
completed 84 trials, 12 each of seven trial types (true area 
varying in a 1.10, 1.20, or 1.30 ratio while additive area 
was held constant; additive area varying in a 1.10, 1.20, 
or 1.30 ratio while true area was held constant; and both 
additive and true area being equal). All trials were pre-
sented in a unique random order for each observer. 
Observers completed two representative practice trials 
before beginning the task. Because more than half of the 
trials had no objectively correct answer (because true 
area did not vary), we measured accuracy as a propensity 
to choose “more,” whether that be more additive area or 
more true area.

Results

The results are shown in Figure 2. Observers were 
indeed faster and more accurate in making discrimina-
tions on the basis of additive area rather than true area. 
A repeated measures analysis of variance (ANOVA) con-
ducted on accuracy with two factors (condition: additive 
area, true area; ratio: 1.10, 1.20, 1.30) revealed main 
effects of both condition, F(1, 96) = 17.80, p < .001, and 
ratio, F(2, 95) = 24.43, p < .001, as well as an interaction 
between the two, F(2, 95) = 9.94, p < .001. Post hoc tests 
revealed that overall performance was above chance in 
the additive-area condition, t(96) = 10.88, p < .001, d = 
1.11. However, surprisingly, observers were unable to 
make discriminations on the basis of true area alone, 
t(96) = 1.70, p = .09, d = 0.17. Even in the trials with the 
biggest difference in area (1.30 ratio), observers were 
not above chance in their area discriminations, t(96) = 
1.93, p = .06, d = 0.20. A separate ANOVA conducted on 
response times revealed a similar pattern, and post hoc 
tests confirmed that observers were more than 120 ms 

http://www.osf.io/dc5t8
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faster for the additive-area trials compared with the true-
area trials, t(96) = 4.88, p < .001, d = 0.50.

Because we did not explicitly manipulate number, 
we tested whether number could potentially explain 
these results. A linear regression with additive area, true 
area, and number as covariates revealed that additive 
area did predict observer responses (p < .001) but that 
neither true area (p = .86) nor number (p = .23) did. 
Results from a supplemental version of this experiment 
in which numerosity was further manipulated can be 
found on the OSF (Experiment S1; osf.io/dc5t8).

Discussion

Additive area can explain variance in area estimation, 
and surprisingly, observers seem unable to make dis-
criminations using true area when additive area is 
controlled.

Experiment 2: Time-Limited 
Approximations

To ensure that all observers spent roughly the same 
amount of time assessing the displays and that these 
judgments were, in fact, rapid approximations, we rep-
licated Experiment 1, except that observers had only 
700 ms to view the stimuli.

Method

One hundred observers were recruited via MTurk, 
although 3 observers were excluded because they did 
not complete a single trial (i.e., they accepted but never 
started the task). All observers consented prior to 

participation, and the experiment was approved by the 
institutional review board at Yale University. The details 
of this experiment were identical to those of Experiment 
1, except that the stimuli appeared for only 700 ms 
before disappearing. Observers still had unlimited time 
to respond.

Results

Results from this manipulation can be seen in Figure 
3a. Observers were more accurate in the additive-area 
condition than the true-area condition, t(96) = 6.40,  
p < .001, d = 0.65, although there were no differences 
in response time (which is to be expected because 
observers were rushed), t(96) = 1.60, p = .112, d = 0.50. 
Observers were unable to make discriminations on the 
basis of true area alone, t(96) = 1.26, p = .21, d = 0.13.

Once again, linear regression revealed that additive 
area significantly predicted observer responses (p < 
.005), whereas number did not (p = .51). True area was 
also a significant predictor in this model (p = .035), 
although in the opposite direction (i.e., observers were 
less likely to choose the option with more area). This 
latter result is likely driven by all the ratios for which 
true area was zero and additive area varied and thus 
should not be overinterpreted. Note that overall per-
formance for the true-area trials did not significantly 
differ from chance (p = .21).

Discussion

Experiment 2 further supports the heuristic nature of 
this phenomenon: In addition to replicating the results 
of Experiment 1, these results show that additive area 
was used for rapid approximation of visual displays.
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Fig. 2. Results from Experiment 1. The proportion of trials on which observers selected the option with “more”—whether that 
was more true area or more additive area—(a) is shown for each of the seven additive-area and true-area ratios tested. The 
dashed line represents chance performance. Mean response time (b) is shown for each of the seven ratios tested. In both graphs, 
the x-axis represents the ratio. When additive area varied, true area remained constant. When true area varied, additive area 
remained constant. Thus, green bars correspond to additive-area trials, red bars correspond to true-area trials, and the blue bar 
represents trials in which both areas were equal. Error bars represent ±1 SE.
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Experiment 3: Rectangles

Most studies on the approximate number system have 
relied on displays of disks. However, to ensure that the 
additive-area heuristic was not specific to such displays, 
we replicated the results of the prior experiment with 
rectangles instead of disks (see Fig. 1b).

Method

One hundred observers were recruited via MTurk, 
although 1 observer was excluded for not completing 
a single trial (i.e., they accepted but never started the 
task). All observers consented prior to participation, 
and the experiment was approved by the institutional 
review board at Yale University. The details of this 
experiment were identical to those of Experiment 2, 
except that the stimuli were rectangles instead of disks. 
The aspect ratio of the rectangles varied from 1.0 to 5.0 
(minimum length = 20 pixels; maximum length = 100 
pixels). (And to rule out minor differences caused by 
how the borders are rendered, we rendered these rect-
angles without borders.)

Results

Once again (see Fig. 3b), observers were more accurate 
in making discriminations on the basis of additive area 
rather than true area, t(98) = 2.61, p = .01, d = 0.26. 
Observers’ true-area discriminations were above chance, 
t(98) = 4.88, p < .001, d = 0.49, although they made the 
correct selection only 57% of the time. A linear regres-
sion revealed that whereas both additive area (p < .005) 
and true area (p < .05) significantly predicted observer 
responses, number did not (p = .61).

Discussion

In general, observers had more trouble making area 
discriminations with rectangles both in additive-area 
and in true-area trials. We suspect that this is because 
one dimension was overweighted relative to the other, 
meaning that a slightly more complex model might best 
explain area approximations in such cases. Although 
the effects in this experiment were weaker than those 
in prior experiments, additive area still outperformed 
true area as a model of area approximation.

Experiment 4: Number Control

Might these results be explained by a confound with 
number? The creation of the stimuli in Experiments 1 
to 3 was constrained in such a way that number was 
partially confounded with additive area. In all three 
cases, differences in additive area predicted accuracy, 
whereas differences in number did not. In a stronger 
test, we constructed stimuli for which we could inde-
pendently manipulate number.

Method

One hundred observers were recruited via MTurk, 
although 2 observers were excluded because they did 
not complete a single trial (i.e., they accepted but never 
started the task). All observers consented prior to par-
ticipation, and the experiment was approved by the 
institutional review board at Yale University. The details 
of this experiment were identical to those of Experi-
ment 1, except as otherwise noted.

There were 60 pairs of stimuli, 4 each of 15 types (5  
area ratios × 3 numerosities). Additionally, it should be 
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Fig. 3. Results from (a) Experiment 2 and (b) Experiment 3. The proportion of trials for which observers selected the option with 
“more”—whether that was more true area or more additive area—is shown for each of the seven additive-area and true-area ratios 
tested. The x-axes represent the ratio. When additive area varied, true area remained constant. When true area varied, additive 
area remained constant. Thus, green bars correspond to additive-area trials, red bars correspond to true-area trials, and the blue 
bar represents trials in which both areas were equal. The dashed lines represent chance performance. Error bars represent ±1 SE.
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noted that it was not possible to use the exact same 
number ratios across the additive area and true area. 
Instead, the goal was merely to have three different 
levels of numerosity at each additive-area and true-area 
ratio. This allowed us to independently assess the role 
of number at each level. To determine what numbers 
ought to be chosen in the first place, we ran an initial 
simulation to see how number would naturally vary (if 
unconstrained) for each additive-area and true-area 
ratio. From these initial simulations, we picked three 
of the possible numerosities. We purposefully chose 
numerosities that would maximally overlap across con-
ditions (to minimize the impact of any unforeseen con-
found). The default number of items in each display 
was set to 10. Full stimulus details (including numerosi-
ties for every stimulus used in the experiment) can be 
found on the OSF (osf.io/dc5t8).

Results

The results from this experiment can be seen in Figure 
4. We found that observers were both faster and more 
accurate in the additive-area trials compared with the 
true-area trials—accuracy: t(97) = 5.02, p < .001, d = 
0.51; response time: t(97) = 3.31, p = .001, d = 0.33, 
replicating our previous results. Regression once again 
revealed that additive area (p < .001) but not true area 
(p = .14) significantly predicted observers’ responses. 
The same regression revealed that number did signifi-
cantly predict responses (p = .004); thus, greater numer-
osity resulted in a decreased likelihood of an observer 
indicating that an item had more area. However, this 
effect was specific to the true-area trials (p = .004). 

When we analyzed only the trials in which additive area 
varied, there was no effect of number (p = .92). In other 
words, although number may be used as a cue in cer-
tain contexts, it has no apparent effect on area judg-
ments when perceived area differs.

Discussion

These results once again reveal the use of an additive-
area heuristic. However, there was an effect of numer-
osity whereby the presence of additional disks in the 
display decreased the likelihood that an observer would 
indicate that the display had more area. This is in con-
trast to previous results that suggested correspondences 
between number and continuous magnitudes such as 
area (Hurewitz, Gelman, & Schnitzer, 2006). Thus, it 
seems that many past studies reporting influences of 
numerosity in these sorts of tasks may have been 
detecting variation caused by additive area instead. 
Importantly, when perceived area varied, observers did 
not rely on number as a cue.

Experiment 5: Perimeter Control

More than most continuous spatial dimensions, perim-
eter has been a dimension of interest in these sorts of 
displays (e.g., DeWind, Adams, Platt, & Brannon, 2015; 
McCrink & Wynn, 2007), and there is some evidence 
that perimeter may actually explain number approxima-
tion (see DeWind et al., 2015; Mix et al., 2002). Although 
perimeter-based approximations may not serve as fea-
sible models of area perception (see the coastline para-
dox; Mandelbrot, 1967), they should be addressed. In the 
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Fig. 4. Results from Experiment 4. The proportion of trials for which observers selected the option with “more”—whether that was more true 
area or more additive area—(a) is shown for each of the seven additive-area and true-area ratios tested. The dashed line represents chance 
performance. Mean response time (b) is shown for each of the seven ratios tested. In both graphs, the x-axis represents the ratio. When 
additive area varied, true area remained constant. When true area varied, additive area remained constant. Thus, green bars correspond to 
additive-area trials, red bars correspond to true-area trials, and the blue bar represents trials in which both areas were equal. Three differ-
ent numerosities were tested for each area ratio; lighter bars correspond to lower numerosities within each set. Error bars represent ±1 SE.
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final experiment, we used a new stimulus to fully dissoci-
ate perimeter from perceived area: ellipses.

Method

One hundred observers were recruited via MTurk. All 
observers consented prior to participation, and the 
experiment was approved by the institutional review 
board at Yale University. The details of this experiment 
were identical to those of Experiment 2, except that we 
substituted perimeter for true area. We used ellipses in 
place of disks. In other words, additive area varied 
while perimeter was held constant, and perimeter var-
ied while additive area was held constant (and both 
varied in 1.0, 1.1, 1.2, and 1.3 ratios). No specific limits 
were imposed on area or numerosity (meaning that, in 
practice, they varied much more than either additive 
area or perimeter). The default number of stimuli was 
15. These stimuli were rendered without borders. The 
aspect ratio of the disks ranged from 1.00 to 2.20.

Results

Overall, observers were better at making discrimina-
tions on the basis of additive area than on the basis of 
perimeter, t(98) = 10.31, p < .001, d = 1.04. Observers 
were unable to make discriminations on the basis of 
perimeter alone, t(98) = 0.99, p = .33, d = 0.10.

Discussion

Cumulative perimeter was unable to explain the 
approximation of area, whereas additive area alone was 
able to do so.

General Discussion

Not only does the additive-area heuristic account for a 
high proportion of the variance in area judgments, but 
observers also seem to be insensitive to differences in 
true area under certain conditions. These results have 
implications for many different research programs in 
cognitive science. We highlight four areas of active 
research likely to be influenced by these findings.

Visual perception

Many researchers have addressed the question of size 
perception (Ekman & Junge, 1961; Teghtsoonian, 1965). 
Some have addressed illusions of visual size (Coren & 
Girgus, 1978). Others have discussed the continuous 
dimensions of space that influence the perception of 
not only size but also density, numerosity, and texture 
(e.g., Anobile, Cicchini, & Burr, 2014, 2016; Durgin, 

1995). In all of these cases, the additive-area heuristic 
offers a simple, powerful, low-dimensional means of 
area estimation. This finding may clarify and unify vari-
ous prior studies on the perception of area (e.g., 
Carbon, 2016) while also raising questions about links 
between the perception of size (of a single object), area 
(of a set of objects), density, and texture.

Approximate area

The study of approximate area is not nearly as perva-
sive as the study of approximate number, yet the 
authors of several prominent articles have studied the 
two in tandem (Lourenco et al., 2012; Odic et al., 2013). 
Both approximate number estimation and approximate 
area estimation are proposed to independently contrib-
ute unique variance to mathematical competence 
(Lourenco et al., 2012). However, this work involved 
manipulation of mathematical area rather than per-
ceived area. Thus, number discrimination could have 
been influenced by additive area, even though math-
ematical area was controlled.

Approximate number

The subject of hundreds of articles and cumulatively 
tens of thousands of citations, the approximate number 
system has dominated the field of numerical cognition 
for the past decade (Barth et al., 2003; Halberda et al., 
2008; Lourenco & Bonny, 2017; Lourenco et al., 2012). 
Much attention has been given to the continuous spatial 
dimensions that are confounded with numerosity (e.g., 
Barth, 2008; DeWind et al., 2015; Mix et al., 2002). Of 
these, area is by far the most common control (e.g., 
Halberda et  al., 2008; Lourenco et  al., 2012; Xu & 
Spelke, 2000). Yet if true area is different from per-
ceived area, variance in perceived area might well 
explain performance on these tasks.

General magnitude

Several researchers have investigated the link between 
number and other magnitudes. One prominent theory 
suggests that representations of time, space, quantity, 
and other magnitudes rely on similar cortical processes 
(Lourenco & Longo, 2010; Sokolowski, Fias, Ononye, 
& Ansari, 2017; Walsh, 2003). In support of this theory, 
many researchers have pointed to Stroop-like errors 
between area and number (Brannon, Abbott, & Lutz, 
2004; Hurewitz et al., 2006; Rousselle, Palmers, & Noël, 
2004). Although the present results do not bear on all 
facets of this extensive literature, they do relate to the 
tendency to use number as a cue to approximate area 
and vice versa (e.g., Hurewitz et al., 2006). This could be 
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the result of shared mechanisms, but it might also be the 
result of a simple confound. The bias to select the set 
with greater numerosity might instead be a bias to select 
the set with more perceived area. Our findings suggest 
that either (a) number has an adverse effect on area 
estimation—exactly the opposite of the general-magni-
tude account—or (b) observers are using some other 
heuristic to make their responses in these cases (e.g., 
choosing the display with the single largest object).

The Illusion of Approximate Area

There have been many careful attempts to capture 
approximate number acuity by modeling a nearly 
exhaustive list of continuous dimensions of the stimuli 
(DeWind et al., 2015), with researchers concluding that 
continuous dimensions of space influence the approxi-
mation of number. What does our approach reveal that 
is not already captured by existing models? Consider 
the Ebbinghaus illusion, whereby one disk, surrounded 
by many smaller disks, appears greater in size than an 
equal-size disk surrounded by many larger disks. Mod-
eling approximate-number-system performance by 
exhaustively characterizing every continuous dimension 
of a display is akin to explaining the Ebbinghaus illu-
sion by measuring every continuous dimension of the 
two disks being compared. No measurements collected 
on the relevant disks could explain the Ebbinghaus 
illusion because they are exactly the same; it can be 
explained only by appeal to perception.

By contrast, we made an explicit prediction about 
what drives the area approximation and manipulated 
that specific dimension to eliminate differences in per-
ceived area. This does not mean that additive area fully 
explains area perception: There may be context- or 
task-dependent interactions among many continuous 
variables (e.g., density, convex hull, average element 
size) that contribute to the perception of size. Yet con-
trolling the additive area eliminated the ability to dis-
tinguish displays in most cases, providing strong 
evidence that this factor is directly linked to area per-
ception. Further, this heuristic offers a simple solution 
that may be easily implemented in studies on the 
approximate number system.

Conclusion

This article documented the additive-area heuristic, a 
simple, low-dimensional heuristic that accounts for sub-
stantial variability in area approximation. The explana-
tory power of this heuristic persists despite variance in 
other salient dimensions (e.g., true area, perimeter, and 
number) and may bear on the interpretation of many 
seminal articles in the field of numerical cognition as 
well as work on area estimation, general magnitude, 

and various aspects of visual perception. The notion of 
perceived area helps explain other findings in many 
diverse fields of cognitive science while advancing 
those fields both theoretically and methodologically.
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