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Abstract 

Topology is the branch of mathematics that seeks to understand and describe spatial relations. 
A number of studies have examined the human perception of topology — in particular, whether 
adults and young children perceive and differentiate objects based on features like closure, 
boundedness, and emptiness. Topology is about more than ‘wholes and holes’, however; it also 
offers an efficient language for representing network structure. Topological maps, common for 
subway systems across the world, are an example of how effective this language can be. Inspired 
by this idea, here we examine ‘intuitive network topology’. We first show that people readily 
differentiate objects based on several different features of topological networks. We then show 
that people both remember and match objects in accordance with their topology, over and above 
substantial variation in their surface features. These results demonstrate that humans possess an 
intuitive understanding for the basic topological features of networks, and hint at the possibility 
that topology may serve as a format for representing relations in the mind.  
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Public Significance Statement 

Topology is infamously unintuitive. Objects like Klein bottles, mobius strips, and the Alexander 
horned sphere all have surprising, unusual properties. Yet some instances of topology are striking 
for how intuitive they are: Topological subway maps, for instance, seem somehow more natural 
than veridical, Euclidean representations of space. Here, we explore this latter sort of topology. 
We show that people are surprisingly sensitive to topological network structure, such that they 
will readily discriminate, match, and remember items on its basis. We argue that this sensitivity 
to topology may be indicative of an intuitive ‘language’ for representing spatial relations in 
general, even beyond the domain of spatial cognition. 
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Introduction 
What do a coffee mug and a donut have in common? Topologically speaking, everything. The 
two are homeomorphic: The two can be continuously transformed into each other without any 
cutting or gluing. In the world of topology, these two very different forms are exactly the same. 

Topology — the branch of mathematics that concerns itself with spatial relations — is often 
profoundly unintuitive in exactly this way. That a donut shape can be transformed into a coffee 
mug is surprising to many (see Figure 1A). That an object (i.e., a mobius strip) can have only 
one surface and one edge is difficult to comprehend, even when looking directly at such a figure 
(see Figure 1C). Yet there are cases for which thinking topologically is quite natural — more so, 
even, than canonical representations of space. Consider Figure 1D, for instance. This is a 
topological map of the London underground, first drawn this way in 1931 by English designer 
Harry Beck (who, to this day, is acknowledged in the corner of every map.) Despite the 
complexity of the map, we have no trouble understanding it; with just a glance, it is easy to see 
how to get from one place to another. This near-unnoticeable simplicity hints at the possibility 
that at least certain forms of topological representation (i.e., those which describe networks) are 
highly intuitive — that we may be endowed with a basic capacity to reason in topological terms. 

What differentiates the topological map of the London underground (and other subway 
maps) from most canonical forms of maps is that it is not a veridical rendering of Euclidean 
space. What the map aims to capture is not exact geometric relations (e.g., precise spatial 
information like distances or angles), but, instead, the relations between various stops and lines. 
Angles and distances — key properties of Euclidean geometry — are purposefully distorted in 
this map. Notice, for example, how all angles come in 45-degree increments, or how most stops 
along a given line are equidistant. In reality, the tracks aren’t so neatly laid, and the stops aren’t 
so evenly distributed. From the perspective of the passengers on the underground, however, this 
map captures exactly what matters most: where they are in relation to the rest of the system, 
and what path they should take to reach their destination most efficiently. The geometric details 
don’t matter, but the spatial relations do.  

Topology concerns itself with properties that are preserved following deformations such as 
twisting and stretching. Network topology, therefore, concerns itself with the shapes of networks 
independent of such continuous deformations. A given line could be twisted or stretched such 
that a dozen stops were removed or added, but it would still be (functionally) one direct path. 
In the case of subway maps, what matters functionally is only whether or where you have to 
switch lines; stops that contain line switches are functional nodes in a way that other stops are 
not.  

Topological networks can be described by a sort of ‘language’ that consists of a few discrete 
‘parts’. Consider, for instance, different tracks in a network that are either in the shape of a “T” 
or an “L”. A “T” shape and an “L” shape have much in common (see Figure 2A). They are both 
made up of two adjacent lines. They both have one vertex. (They are both contained in the 
world “topology”.) But, if we think about these shapes as networks, the “T” has one thing that 
an “L” does not. If the answer isn’t obvious, it may help to consider a different formulation of 
the question: What prevents the “T” from being continuously transformed into an “L”?  

The answer is that a “T” shape has a vertex at which three lines meet (see Figure 2A). The 
“L” shape, in contrast, has only a 2-point vertex. A 2-point vertex, in topological terms, is 
irrelevant. One can easily imagine how the “L” could be twisted at that vertex to form a straight  
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Figure 1. (A) An example of three homeomorphic shapes. Famously, coffee mugs and donuts have the same topology. 
The letter “P”, if printed in a three-dimensional form, also shares this topology. (B) An example of English letters 
which have a unique topology; none of these is like the other. (C) A depiction of a mobius strip, an object known for 
its unique, unintuitive topology, as it has only one side and one edge. (D) A modern rendition of the original 
“topological map” designed for the London Underground. While hardly visible here, you can see credit given to its 
creator, Harry Beck, in the bottom right corner. 

 
line (like a straw with a built-in bend). This is to say that the “L” is homeomorphic with a 
straight line, but not with a “T”. No matter how you twist or stretch or bend the “T”, it’s 3-point 
vertex prevents it from becoming a straight line. This 3-point vertex (or “T-junction”) is a 
functional “building block” of a larger structure.  

It is also possible to have 4-point vertices (a ‘cross’; see Figure 2A), or 5- or 6-point vertices 
(as in an asterisk), or any n-point vertex. Any such n-point vertex (greater than n=2) is a 
distinct topological form; none can be transformed into any other. From a topological 
perspective, these basic building blocks are the only units that matter. It does not matter, for 
instance, how many stops are placed along a line in the subway system, or how many times that 
line bends. It only matters whether and how two lines intersect with one another. Those 
intersections reflect the choice points relevant to passengers.  

In addition to the various forms of vertices, there is one other essential building block of 
network topologies. This one is easier to spot. Consider “T” vs. “P”. What’s the difference 
between them? Both have a single T-junction. Both are made up of two lines. (Both are 
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contained in the word “topology”!). But only the latter has a hole. Holes, like T-junctions and 
crosses, are a distinct topological feature of networksi.  

Although we do not typically think or talk about objects in topological terms, it is easy to 
see how these building blocks are intuitive: The difference between “T” and “P” feels almost so 
obvious that it need not be stated; the difference between “T” and “L” might be slightly less 
obvious, but the difference between them is nevertheless clearly appreciable. A question arises, 
then, about whether (or to what extent) people naturally represent objects and spaces with 
respect to their network topology.  
 

 

Figure 2. (A) An example of the relative topological ‘parts’ of the letters “T”, “X”, “L”, and “P”. (B) The number of 
3-point vertices (T-junctions), 4-point vertices (crosses), and holes of all 26 letters of the English alphabet. Letters like 
“C”, “M”, and “Z” are the same on all the dimensions, and, in this case, are homeomorphic. (Note: The fact that two 
shapes have the same topological features does not necessarily mean that they are homeomorphic; just like the order 
of words in a sentence affects its meaning, how topological features are combined affects their overall structure.) 

Prior work on topology 
Sensitivity to certain kinds of topological structure has been examined extensively for over four 
decades (see, e.g., Chen, 1982; Chen, 2005; Zhou et al., 2010). This research program began with 
a claim that the visual system represents topological structure (Chen, 1982; but see Rubin & 
Kanwisher, 1985, as well as Chen, 1990), but has been extended to show how other processes, 
like apparent motion (Chen, 1985), working memory (Wei et al., 2019), and number perception 
(He et al., 2015) are influenced by topology. This sensitivity to topology appears to be deep-
seated: Human infants (Chien et al., 2012; Kibbe & Leslie, 2016) and such distant species as 
bees (Chen et al., 2003) exhibit sensitivity to basic topological properties like closure. 

Most of this prior work focuses on the topology of objects, rather than the sort of network 
topology that is represented in a topological subway map.  Though related, network topology 
and object topology differ in important ways. Consider the letters “T” and “L”, for instance. 
From the perspective of object topology — if we imagine these letters as three-dimensional 



INTUITIVE NETWORK TOPOLOGY  p. 5 
 

objects that we can touch — they are homeomorphic. They are both just wholes without holes, 
no different from a cube, a sphere, or a pyramid. If one imagines these shapes not as pieces of 
paper, but as segments in a maze, however, the difference between them becomes clearer. If you 
were navigating a maze and you reached the 2-point vertex of the “L”, you would have no choice 
to make; there is only one path to follow. If, instead, you found yourself at the 3-point vertex of 
the “T”, you would have to pick a side. No matter which direction you came from, there would 
be two branching paths from that point forward. Likewise, at a 4-point vertex (a cross) there 
would be three options; at a 5-point vertex there would be 4; and so on. Holes, too, would affect 
how you navigate. The simplest topological form containing a hole is just a circle, or an “O”. If 
you were trapped inside a maze of that form, you’d never have any decisions to make, but you’d 
never escape, either.  

The difference between object topology and network topology matters in practice. It may 
alter the interpretation of some prior work. For example, consider Experiments 1 and 2 of Wei 
and colleagues (2019). They compare three key conditions: A no-change condition, a non-
topological change condition, and a topological change condition (see their Figure 1). Through 
the lens of network topology, the nontopological change condition actually contains a meaningful 
topological change. It compares an “E” and an “H”. The former has a single T-junction, whereas 
the latter has two.  

While features of object topology like closure, overlap, and embedding have been widely 
studied (Wei et al., 2019; but see also Kenderla, Kim, & Kibbe, 2023; Kibbe & Leslie, 2016; 
Renz et al., 2000; Rips, 2020), including in work which has utilized graph-like stimuli rather 
than filled-in shapes (see Kanbe, 2013), features of network topology like T-junctions and crosses 
have not been explicitly studied in this way (but see, e.g., Lowet et al., 2018). It remains unclear 
whether to what extent these different kinds of topology are related.  

The kind of topology studied here, in contrast with prior work on object topology, offers a 
‘language’ for describing relations, whether those be the relations of social groups, institutional 
structures, or logistical networks (for a review of the study of relations in cognitive science, see 
Hafri & Firestone, 2021). In this way, network topology, by virtue of capturing said relations, 
may lie at the heart of human cognition. 

Current study 
Here, we investigate sensitivity to some of the “building blocks” of relational, topological 
reasoning (e.g., crosses, T-junctions, and holes). These parts are meaningful because they are 
functional: This simple ‘language’, consisting of two types of functional ‘units’, is sufficient not 
only to describe the entire English alphabet (see Figure 2B) but all conceivable network 
structures. Therefore, we ask: To what extent do people intuitively ‘speak’ the language of 
topological representation? To what extent do they readily represent and differentiate the 
functional building blocks of topological networks? We answer these questions using three 
different experimental paradigms.  Experiments 1 and 2 use an odd-one-out paradigm to ask 
whether participants discriminate based on topological relations. Experiment 3 uses a memory 
paradigm to ask whether participants are more likely to false alarm when lures share topological 
features from previously encoded items. Experiment 4 requires participants to make explicit 
similarity judgments and asks whether changes in topology alter perceived similarity more than 
changes in other surface features.   
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Experiment 1a: Odd-one-out (3 segments) 
In a first experiment, we tested sensitivity to topological structure in the most straightforward 
way possible. Participants completed a simple “odd-one-out” game modeled after the ‘intruder’ 
paradigm used by Dehaene et al., 2006. Participants were tasked with selecting which of six 
fictional “letters” was not like the others in cases where five of the six forms had the same 
topology and one differed slightly. If people are sensitive to topological structure, they should be 
able to successfully identify the odd-one-out. At first blush, this may not seem like a bold 
prediction: It should be easy to pick a single non-triangle out of a set of triangles. However, 
some of the comparisons are much less obvious. See the example trial in Figure 3A. Can you tell 
which item is the odd one out?  

One strength of this design is that we can ask not only whether people distinguish items 
based on their topology, but also how they distinguish items based on their topology. Are there 
certain topological features (e.g., holes, T-junctions) that are more salient than others? Does the 
likelihood of selecting the odd-one-out scale with the number of topological differences of the 
distinct item? In other words, our stimulus set was designed to allow us to assess whether people 
are broadly sensitive to topological differences, or whether they are only sensitive to certain 
ones, sometimes. 

Method 
Transparency and openness. Here, and for all subsequent experiments in this paper, the sample 
sizes, primary dependent variables, and key statistical tests were chosen in advance and were 
pre-registered. This information, as well as raw data and materials, are available on a public 
OSF page (see OSF: https://osf.io/w8p6s/). 

Participants. 50 participants completed the task online via Prolific. All participants were 
adults currently residing in the United States. The exclusion criteria we pre-registered were 
highly conservative, and thus no participants were excluded. This study was approved by the 
relevant Institutional Review Board. 

Stimuli. There were 42 distinct stimuli, 6 exemplars for each of 7 distinct topologies. In 
terms of [T-junctions-Holes], the 7 unique topologies were: [0-0], [0-1], [1-0], [1-1], [2-0], [2-1], [3-
1]. ([0-0] refers to an item with zero T-junctions and zero holes, like an “L”, whereas [1-0] refers 
to an item with one T-junction and zero holes, like a “T”.) All stimuli are available on our OSF 
page (and are described using a similar notation). Each of the six stimuli on each trial was 
presented inside of a circle, which was designed to be approximately 1 inch in diameter on a 
typical computer display.  Stimuli were designed to be as heterogeneous as possible whilst 
consisting of exactly three line segments. This means that each stimulus could be drawn using 
three straight lines, ignoring any vertices. For instance, a “T” could be thought of as one line 
resting on top of another line, or it could be thought of as three lines joining at a central point. 
For our purposes here, this would count as only two line segments. We held the number of line 
segments constant to minimize variation across stimuli and avoid potential confounds. 
Additionally, the use of three line segments ensured that stimuli were as simple and 
straightforward as possible.  

Procedure. Participants were introduced to the “odd-one-out” task in which they would see 
six ‘letters’ and were asked to identify which one was not like the others. Participants were told 
that these letters were from a hypothetical alphabet that did not necessarily follow the rules of 
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English letters. They were further told that the letters were presented in a random orientation. 
They were given no other instruction about how they were meant to complete the task. Each 
trial consisted of a 3x2 grid of stimuli (see Figure 3A), from which observers were prompted to 
select the odd one out. There was no time limit on their responses, and they were not instructed 
to hurry. Participants completed two representative practice trials, the data from which were not 
recorded, before beginning the task. 

Not all topologies were compared against all others. Of the 21 possible comparisons, we 
selected 12. The twelve comparisons were: [0-0 vs. 0-1], [0-0 vs. 1-0], [0-1 vs. 1-1], [1-0 vs. 1-1], 
[1-1 vs. 2-1], [2-0 vs. 1-0], [2-0 vs. 2-1], [2-1 vs. 3-1], [2-0 vs. 0-0], [1-1 vs. 3-1], [2-1 vs. 0-1], [3-1 
vs. 0-1]. These were selected so that (a) the odd-one-out always differed either in the number of 
holes or in the number of T-junctions, but not both, and (b) the odd-one-out would differ from 
the rest by different degrees (e.g., on some trials, there may be a difference of 1 T-junction such 
that five items have 2 T-junctions and one has only one T-junctions; on others, there may be a 
difference of 2 or 3 T-junctions). Each of the twelve comparisons was presented a total of four 
times: Twice with one of the topologies in the majority and twice with the other topology in the 
majority (i.e., for the comparison [0-0 vs. 0-1], there were two trials for which 0-0 was the odd-
one-out and two trials for which 0-1 was the odd-one-out). The specific exemplars that were 
chosen for each topology, as well as the locations in which they appeared, were fully randomized 
with no constraints. This meant that, for a given comparison [such as 0-0 vs. 0-1], participants 
might see different exemplars.  

Results and Discussion 
Results from this experiment can be seen in Figure 3B (for more detailed results, see Figure S1 
on the OSF page). Participants were well above-chance discriminating topological differences. 
This was true for all comparison types (+/- 1 hole: t(49)=24.49, p<.001, d=3.46; +/- 1 T-
junction: t(49)=17.44, p<.001, d=2.47; +/- 2 T-junctions: t(49)=22.06, p<.001, d=3.12; +/- 3 
T-junctions: t(49)=31.08, p<.001, d=4.40). Moreover, this was true for each of the twelve unique 
comparisons (ps<.001). As is evident from the figure, differences in holes were more salient than 
T-junctions; participants were better at detecting a difference of 1 hole than differences of one 
(t(49)=12.85, p<.001, d=1.82) or even two (t(49)=4.83, p<.001, d=.68) T-junctions, but worse 
than differences of three T-junctions t(49)=4.93, p<.001, d=.70. 

While some of these differences may seem obvious once pointed out, keep in mind that 
participants were given no instructions whatsoever about how they were meant to differentiate 
the items. They could have attempted to differentiate based on the angle of the lines, the length 
of the lines, the length of whole item, and so on. As the example in Figure 3A illustrates, some 
of these comparisons can be quite challenging even with knowledge of the topological 
distinctions. Yet, even for this comparison — the most difficult one in the set — participants 
were well above chance. 

Experiment 1b: Odd-one-out (4 segments) 
Experiment 1a relied exclusively on “letters” made up of exactly three line segments. This 
eliminated any confound with the number of line segments, but it also limited the available 
number of topology forms: There are only so many ways to create one hole and one T-junction 
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with three line segments. So, to make the task slightly more complex, we constructed a new 
stimulus set comprised of letters made up of four line segments and replicated the study.  

Method 
Everything about the design and procedure was identical to Experiment 1a, except that all 
stimuli consisted of four line segments instead of three. Fifty new participants completed the 
task via Prolific. There were no exclusions.  

Results and Discussion 
Participants were again well above-chance discriminating based on topological differences. This 
was true for all comparison types (+/- 1 hole: t(49)=13.21, p<.001, d=1.87; +/- 1 T-junction: 
t(49)=8.32, p<.001, d=1.18; +/- 2 T-junctions: t(49)=12.51, p<.001, d=1.77; +/- 3 T-junctions: 
t(49)=17.37, p<.001, d=2.46) and for all but two of the twelve unique comparisons (ps<.05; 
eight of the twelve were p<.001). Differences in holes were again relatively more salient than T-
junctions; participants were better at detecting a difference of 1-hole than differences of one 
(t(49)=9.39, p<.001, d=1.33) or even two (t(49)=3.42, p=.001, d=.48) T-junctions. Thus, these 
results replicate and extend the results of Experiment 1a (see Figure S2 for a summary figure; 
see Figure S3 for complete results). 

Experiment 1c: Odd-one-out (3-5 segments) 
A potential concern is that exemplars of a given topology may be said to resemble each other to 
a large degree. Even if one struggles to articulate or quantify what exactly, other than their 
topology, makes two items more similar, it is hard to deny that this is a reasonable argument. 
To address this concern, we replicated Experiments 1a and 1b, except that each trial contained 
stimuli with three, four, and five line segments, all intermixed (see Figure 3C). Still, just as 
before, only one of the items differed topologically. In this design, the surface features of the 
objects varied much more on each trial. We reasoned that, as the stimuli were significantly more 
heterogeneous, the differences in topology should be less salient. Thus, if participants still 
successfully identified the odd-one-out, it would provide stronger evidence of genuine sensitivity 
to topological structure (rather than some other low-level property).  

Method 
Everything about the design and procedure was identical to Experiments 1a and 1b, except that 
the stimuli were made up of three, four, and five line segments. Fifty new participants completed 
the task via Prolific. There were no exclusions.  

This experiment included the 42 stimuli used in Experiment 1a, the 42 stimuli used in 
Experiment 1b, and 42 new stimuli (comprised of five line segments) designed specifically for 
this experiment. Thus, there was a much larger pool of stimuli which could be selected on a 
given trial. The items were selected randomly with the only constraint being that each trial 
must consist of 2 items with 3 segments, 2 items with 4 segments, and 2 items with 5 segments. 
The odd-one-out was nevertheless randomly determined and could have had any number of line 
segments (i.e., the number of line segments of the odd-one-out was not counterbalanced across 
trials). As is evident from Figure 3C, this design results in stimuli that were considerably more 
heterogeneous. 
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Figure 3. Design (A) and results (B) of Experiments 1a. Design (C) and results (D) of Experiments 1c. Design (C) 
and results (D) of Experiments 1d. The images superimposed on the bars represent a single contrast with that 
number/kind of topological differences. Error bars represent +/- 1 SE. As there are six options, chance performance is 
equal to 16.67%, indicated by the grey line. The correct answer in (A) is the top-left item; the correct answer in (C) is 
the top-right item; the correct item in (E) is the top-middle item; in each of these cases, the correct answer has one 
fewer T-junction than the other items. 
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Results and Discussion 
Participants were again well above-chance discriminating based on topological differences. This 
was true for all comparison types (+/- 1 hole: t(49)=15.89, p<.001, d=2.25; +/- 1 T-junction: 
t(49)=10.26, p<.001, d=1.45; +/- 2 T-junctions: t(49)=15.02, p<.001, d=2.12; +/- 3 T-
junctions: t(49)=21.24, p<.001, d=3.00) and for all twelve unique comparisons (ps<.05; eleven of 
the twelve were p<.001). Differences in holes were again relatively more salient than T-junctions; 
participants were better at detecting a difference of 1-hole than differences of one (t(49)=12.10, 
p<.001, d=1.71) and two (t(49)=4.65, p<.001, d=.66) T-junctions. Thus, these results replicate 
and extend the results of Experiment 1a (see Figure S1). 

Thus, these results replicate and extend the results of Experiment 1a and 1b, showing that 
the previously observed differences in choice are unlikely to be explained by any low-level 
confound in the stimulus set. 

Experiment 1d: 3D Stimuli (3-5 segments) 
The stimuli tested so far occupy a strange middle-ground: They are not quite like normal 
objects, but they are not quite networks either. Is there something about these letter-like stimuli 
that is influencing how participants respond? To address this possibility, we created a new 
stimulus set. Unlike the previous stimuli, these new stimuli were 3D rendered to have depth and 
shading like ordinary objects. Additionally, they were constructed to look more like networks in 
that they were given visible nodes and edges (see Figure 3E). The goal of this experiment is 
simply to determine if the previous patterns of results generalize to a novel stimulus set — to 
ensure that the results of the previous experiments are not due to any idiosyncrasies in the 
original stimuli.  

Method 
Everything about the design and procedure was identical to Experiments 1c, except that the 
stimuli were 3D renderings constructed in Blender (see Figure 3E). The full stimulus set is 
available on our OSF page. Fifty new participants completed the task via Prolific. There were no 
exclusions.  

Results and Discussion 
Participants were again well above-chance discriminating based on topological differences. This 
was true for all comparison types (+/- 1 hole: t(49)=14.15, p<.001, d=2.00; +/- 1 T-junction: 
t(49)=8.35, p<.001, d=1.18; +/- 2 T-junctions: t(49)=9.68, p<.001, d=1.37; +/- 3 T-junctions: 
t(49)=15.09, p<.001, d=2.13) and for all twelve unique comparisons (p<.001). These results are 
almost identical to the results of Experiment 1c. Therefore, behavior is unlikely to be explained 
by any idiosyncrasies of either stimulus set. This conclusion is not obvious. The stimuli used in 
this experiment differ in at least one crucial way from those used in the previous experiments. 
Because ‘nodes’ in the networks are represented by spheres, T-junctions are a more visible (in 
that they are always marked by a separate sphere). While this should not influence how people 
interpret the topology of the networks, it may well have led participants to use various heuristics 
to identify the odd one out. The fact that behavior is largely consistent across the two stimulus 
sets indicates that participants are likely solving the problems in the same way in both cases — 
a further indication that participants are truly sensitive to the topological structure per se.  
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Experiment 2: More complex topologies 
Experiments 1a, 1b, and 1c demonstrated a clear sensitivity to certain topological structures (T-
junctions, holes). However, T-junctions and holes are not representative of all possible 
topologies. By constraining the stimulus sets to only these features, we limited the set of possible 
network topologies tested. Thus, the goal of Experiment 2 was to expand the range of topologies 
that we tested, and to further increase the complexity of the stimuli. Rather than manipulating 
just T-junctions and holes, we added a third topological ‘part’: Four-point vertices, or ‘crosses’ 
(see Figure 2A). An example trial can be seen in Figure 4A (and for more examples, all stimuli 
are available on our OSF page). Successful odd-one-out detection in this task would provide even 
stronger evidence for genuine sensitivity to topology.  

Method 
Everything about the design and procedure was identical to the previous three experiments, 
except that (a) the stimuli were always made up of exactly four line segments, (b) they could 
consist of T-junctions, holes, and crosses, and (c) we used a new stimulus set that expanded on 
the stimuli used in Experiment 1b. Fifty new participants completed the task via Prolific. There 
were no exclusions.  

For this task, we generated a new stimulus set from scratch. This consisted of 11 unique 
topologies, which were (in terms of [crosses-T-junctions-holes]: [0-0-0], [0-0-1], [0-1-0], [0-1-1], [0-
2-0], [0-2-1], [1-1-0], [1-0-1], [2-0-0], [2-0-1], and [2-1-0]. In this notation, the network 0-0-1 would 
be one with zero crosses, zero T-junctions, and a single hole (i.e., a quadrilateral). Given that 
there were six unique exemplars of each topology, this resulted in 66 unique items.  

Again, not all possible topologies were compared against all others. Instead, we pre-selected 
15 comparisons (6 of which varied in their number of crosses, 7 in their number of T-junctions, 
and 3 in their number of holes). These selections were made so that there were some instances in 
which there was only a single difference (e.g., a difference between 1 and 2 T-junctions), and 
some instances in which there were two differences (e.g., the comparison [2-0-1] vs. [0-0-1] would 
mean that the odd-one-out had two more or two fewer crosses than the other items). The trials 
in which holes differed were the only exception; there was never a case where the odd-one-out 
differed by more than one hole. This was done because (1) it is already clear from the prior data 
that people are highly sensitive to the presence of absence of holes, and (2) allowing for multiple 
holes needlessly complicates the stimuli.  

The topological comparisons were the same for all participants, however the individual 
exemplars were selected randomly and so differed across participants. Each comparison was 
presented a total of four times, two times with one of the topologies in the majority, and two 
times with the other topology in the majority. Given that there were 15 possible comparisons, 
this resulted in a total of 60 total trials. 

Results and Discussion 
The results of this experiment can be seen in Figure 4B. Participants were again well above-
chance discriminating based on topological differences. This was true for all comparison types 
(+/- 1 hole: t(49)=15.78, p<.001, d=2.23; +/- 1 T-junction: t(49)=8.73, p<.001, d=1.23; +/- 2 
T-junctions: t(49)=14.57, p<.001, d=2.06; +/- 1 cross: t(49)=7.85, p<.001, d=1.11; +/- 2 
crosses: t(49)=23.80, p<.001, d=3.37). As before, differences in holes were relatively salient; 
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participants were better at detecting differences in holes than differences of T-junctions 
(t(49)=10.69, p<.001, d=1.51) or crosses (t(49)=7.85, p<.001, d=1.10). These results replicate 
and extend the results of Experiment 1a-1d. They demonstrate that people are highly sensitive 
to several distinct topological features (i.e., holes, T-junctions, and crosses), even when the 
stimuli vary along multiple dimensions across the stimulus set. 

 

 

Figure 4. Design (A) and results (B) of Experiment 2. Error bars represent +/- 1 SE. As there are six options, 
chance performance is equal to 16.67%, indicated by the grey line. The correct answer in (A) is the bottom middle 
shape, as it has two holes (like the other items) but no T-junctions (whereas the other items have one). 

Experiment 3: Memory 
The experiments thus far have demonstrated that people are sensitive to topology, at least when 
they are explicitly asked to reason about objects’ structural similarity. However, that adults can 
sometimes reason about topology may not be too surprising. After all, we have established that 
topology is a kind of relational reasoning, and we know that adult participants have the capacity 
to reason about relations. So, here, we examined not just whether adults can discriminate based 
on topology, but whether they spontaneously represent objects based on their topology. Using 
the same sorts of stimuli we used in the previous task, we designed a memory task in which 
participants were shown six different items with two distinct topologies (three of each) and were 
given several seconds to encode them as well as possible. After a delay, participants saw a single 
test item and were asked to indicate whether that item had been present in the previous set of 
six. On one third of trials the test item was one of the six items presented in the encoding phase. 
On the other two thirds of trials the test item was new. Crucially, however, half of the time that 
the test item was new, it matched one of the two topologies present in the encoding phase; on 
the other half of trials, it was of a third distinct topology (see Figure 5A). We reasoned that if 
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people represent objects in terms of their topology, they should be more likely to falsely indicate 
that they had seen an item that had a familiar topology, even if it had not been seen previously.  

Method 
Many of the display and design details are the same as in Experiment 1c, except as noted below. 
50 new participants completed the task via Prolific. There were no exclusions. 

We used the stimuli from Experiment 1c (i.e., the full set 126 stimuli comprised of 6 
exemplars for each of 7 topologies with 3, 4, and 5 line segments). On each trial, participants 
were shown six random items, selected with the constraint that there were three items with each 
of two different topologies (randomly chosen) and an equal number of items with 3, 4, and 5 line 
segments (i.e., two of each). The only additional constraint was that for each topology there 
were two items with the same number of line segments and one with a different number. There 
were no constraints on which topologies were presented together. The six items were shown for 
4s for encoding, followed by a 1 second delay before a single test stimulus was presented. 
Participants were prompted to indicate whether the test item had been present in the encoding 
phase pressing “Y” for yes or “N” for no.  

There were three possible trial types (see Figure 5B): ‘Present’ trials in which the test item 
had indeed been present in the encoding phase of the trial; ‘Absent – Same topology’ trials in 
which the item was not present but matched one of the two topologies present in the encoding 
phase; and ‘Absent – Different topology’ trials in which the item had not been presented and 
was of a third distinct topology not present in the encoding phase. There were 40 of each trial 
type, for a total of 120 trials. 

Results and Discussion 
The results of this experiment can be seen in Figure 5B. Unsurprisingly, participants were much 
more likely to say that they had seen an item before when they truly had, compared to both the 
absent-same-topology (t(49)=12.09, p<.001, d=1.71) and absent-different-topology (t(49)=14.84, 
p<.001, d=2.10) trials. Critically, however, people were also more likely to false alarm to new 
same-topology test items compared to different-topology test items (t(49)=7.20, p<.001, 
d=1.02). One possible deflationary explanation of the observed results is that they are caused by 
a specific subset of the trials (for instance, the ones in which there is a difference in holes). 
Intuitively, one could imagine how participants might false alarm to a stimulus with a hole if 
they’d just seen six items with holes (and less likely to false alarm if there was no hole after 
they’d just seen items with holes). To address this possibility, we separately analyzed only those 
trials in which there was no difference in holes (i.e., wherein all stimuli, at encoding and test, 
have the same number of holes). Still, participants were more likely to false alarm to same-
topology test items (t(49)=5.34, p=.014, d=.76).  

This tendency to false alarm to items of the same topology suggests that people aren’t 
merely sensitive to topological structure when they are asked to be. Instead, people may be 
encoding these objects, at least to some extent, with respect to their topology — such that they 
are more likely to confuse two distinct items with the same topology. These findings therefore 
raise the intriguing possibility that topology is part of the ‘language’ of spatial representation 
used to represent objects and spaces. 
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Figure 5. Design (A) and results (B) of Experiment 3. Error bars represent +/- 1 SE.  

Experiment 4: Match-to-sample task 
The previous two tasks demonstrated that people generally make discriminations based on 
topological structure, and that they may remember objects partly with respect to their topology. 
But what if participants are asked to make explicit similarity judgments? Here, we had 
participants judge which of two items was more like a sample item. One of the items was a 
topology-match: It had the exact same topology as the sample item, but different in some other 
specific way (e.g., via the shifting or rotation of an individual line segment). The other item was 
a topology-mismatch: It had a different topology from the sample item but was objectively more 
like the sample item than the topology-match was (for a more detailed explanation, see Method). 
In other words, we created a tension between surface-level similarity and topological similarity: 
One item was objectively more similar to the sample (e.g., in terms of the physical distance that 
one segment moved), but the other item was matched in terms of its topology (the topological 
matches were always twice as different from the sample in terms of objective change; see Figure 
6A-B). Simply, we asked whether people might more readily match items based on topology 
rather than surface-level similarity. 
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Method 
Many of the display and design details are the same as in Experiment 3, except as noted below. 
Fifty new participants completed the task via Prolific. There were no exclusions. 

We created a new stimulus set where each trial consisted of (1) a sample item, (2) a 
topology-mismatch (a variation of the sample item with a fixed change, via translation or 
rotation, that disrupted topology), and (3) a topology-match (a variation of the sample item 
with twice as much physical change as the topology-mismatch but which maintained the sample 
topology as the sample). In other words, the topology-mismatch was more physically similar to 
the sample than the topology-match was, but the topology-match retained the sample’s 
topological form. For instance, in Figure 6A, the sample item is shown in the top-left panel. The 
two variations are shown in the bottom-right panel. The topology-mismatch was created by 
moving the leftward horizontal line halfway down the vertical line. This topology-mismatch has 
a different topology from the sample. The topology-match was created by moving that same 
leftward horizontal line fully down the vertical line. This topology-match involved that same line 
moving by twice as much, but the result was an item that shared the topology of the sample. 
For all twenty unique items that we created, the topology-match always differed from the sample 
by twice as much as the topology-mismatch in exactly this way. The stimuli were designed by a 
research assistant (with instructions from the authors) who had no knowledge of the hypotheses.  

On each trial, the sample (one of 20 items) would appear in one of the six cells of a 3x2 grid 
(we recycled the grid display from the previous experiments to make the task slightly more 
interesting; see Figure 6A). It would appear for 2.5s. After a 500ms delay, two test items were 
presented in two other random cells of the 3x2 grid. Participants were prompted to indicate by 
mouse click “which of the images [was] most like the one [they] saw before”. Response was 
registered via brief visual feedback regardless of their choice. 

Because the items were mirrored (the topology-mismatch was always the midpoint between 
the other two items), the sample item that was presented could be either the default item that 
we generated or the corresponding, same-topology item. The order was counterbalanced. As 
there were 20 unique items, two orders in which the items could appear, and two repetitions of 
every trial type, there were a total of 80 trials. 

Results and Discussion 
The results of this experiment can be seen in Figure 6, broken down by item (Figure 6B) and 
participant (Figure 6C). Participants overwhelmingly matched based on object topology at the 
item level (about 64% of the time; t(19)=2.23, p=.038, d=.50) as well as the participant level 
(t(49)=10.84, p<.001, d=1.53). This was independently true for those trials in which there was a 
change in the presence of holes (t(49)=18.31, p<.001, d=2.59), T-junctions (t(49)=6.28, p<.001, 
d=.89), and both (t(49)=3.15, p=.003, d=.45). There were however some items for which 
participants seemed to have preferred the more physically similar object to the topological 
match. These were primarily the items that involved rotation. As one can see in the items for 
themselves, the degree of rotation was (intentionally) large, and this created situations where, 
for instance, a line would rotate through another line in the image to the other side (see 
Supplementary Materials).  
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Figure 6. Design (A) and results (B-C) of Experiment 4. Displayed here is the proportion of participants matching 
on topology, broken down by item (B) and participant (C). Error bars represent +/- 1 SE.  

That people sometimes matched based on surface features does not undermine the overall 
finding that on average people match based on topology.  After all, the topology-matched items 
were always objectively twice as different as the topology-mismatched items. Despite this, over 
90% of participants selected based on topology more often than not (see Figure 6C). In any case, 
topology is surely not the only way that people categorize or represent objects; it is one of many. 
Curvature, for instance, is topologically irrelevant, yet nobody would argue that people aren’t 
sensitive to curvature (or that, in a different task, if people occasionally categorized based on 
curvature, this would provide evidence against the relevance of topology). It is telling that (the 
vast majority of) participants consistently categorized based on topology rather than surface 
features, even if there are some exceptions.  
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General discussion 
Here, we have explored whether and how people are sensitive to topological structure. In a first 
set of experiments, we showed that participants can discriminate between objects based on their 
topology, even when given no instructions about how they were meant to discriminate 
(Experiments 1a-1d). Next, we showed that this ability to discriminate items based on their 
topologies extends to stimuli with more complex topologies (Experiment 2). In all four 
experiments, we found not only that people on average discriminated based on topology, but 
that the likelihood of identifying the odd-one-out scaled with the number of topological changes. 
In a fifth experiment (Experiment 3), we showed that people’s memories are influenced by 
topology: People are more likely to falsely report having seen a novel item that matches the 
topology of a familiar item than a novel item with a novel topology. Finally, we showed that 
people are more likely to explicitly match objects based on their topology rather than their 
surface features, to the extent that people will select based on topology even when the other 
option is objectively twice as similar to the sample (Experiment 4). Collectively, these results 
suggest that, despite the fact that human adults rarely reason explicitly in topological terms, 
they nevertheless act on an intuitive notion of network topology. 

Perceiving relations 
Topology is, ultimately, about relations — how the pieces of space connect to one another. This 
is why topological maps are intuitive: They capture the relevant relations without the 
distraction of spatial detail. Reasoning about relations has a long history in cognitive science, in 
perception (Kim & Biederman, 2012; Kranjec et al., 2014; Franconeri et al., 2012; Roth & 
Franconeri, 2012; for review, see Hafri & Firestone, 2021), language (Bowerman & Choi, 2003; 
Landau, 2017, 2018; Landau & Jackendoff, 1993), and social cognition (Ding et al., 2017; Papeo 
et al., 2017; Papeo et al., 2019). In fact, virtually all the work cited here cuts across at least two 
of those disciplines, speaking to the centrality of relations in perception and cognition. 

Typically, the sorts of relations that are studied in cognitive science are ones with 
corresponding words (e.g., above, next to, push, etc.). The topological relations studied here, in 
contrast, are ones that are less well-represented in language. Of course, topological relations can 
be captured by language. We do have a word for “hole”, and here we’ve assigned the terms “T-
junctions” and “crosses” to refer to 3-point vertices and 4-point vertices, respectively. Yet these 
latter terms are not ones that we would readily use to describe these structures. Most people 
encountering a three-way vs. four-way intersection would likely describe it as (just) an 
intersection — even though we clearly interact with these two types of intersections quite 
differently. Even the ordinary concept of a “hole” is tricky. Is the “hole” in the letter “R” the same 
as a bullet hole? Not quite: The latter we think of as an intrusion on an otherwise complete 
object, whereas the former is a part of the object. Thus, while the topological features we’ve 
studied here are clearly intuitive on some level (people readily discriminate on their basis; 
people’s memories are influenced by them; etc.), they aren’t straightforwardly captured by 
ordinary language. This further supports the possibility that, like ‘core’ geometric properties 
such as symmetry, centrality, and curvature, the topological knowledge studied here may develop 
independently from language. 

What we have shown here is that people are sensitive to these topological features in some 
form. This is not to say that people are treating the letter-like stimuli used here as networks 
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themselves. Though our stimuli bear some resemblance to the structure of subway maps — as 
they were designed with such maps in mind — it seems more likely that people are viewing 
them as objects rather than network structures per se. An open question remains about whether 
there is in fact a common topological representation underlying the representation of certain 
objects as well as certain large-scale spaces. 

Alternative explanations 
We have shown that adults are generally sensitive to topological structure — but why? One 
obvious possibility is that adults only appear to be sensitive to topology because topological 
changes result in other relevant changes. Differences in topology may influence perceived 
complexity, for instance. Prior work has shown that complexity of figures influences attention 
(Sun & Firestone, 2021), encoding in language (Sun & Firestone, 2022b), and even aesthetic 
preferences (Sun & Firestone, 2022a). Just glancing at the stimuli used here, there is no doubt 
that complexity varies across different topological forms to some extent. 

However, it is not clear how complexity of topological forms should be measured. There are 
numerous ways of characterizing psychological and visual complexity (for review, see Donderi, 
2006), none of which seems apt to measure the complexity of figures like these. Consider one 
metric of complexity used for describing visual forms: “structural surprisal” (see Feldman & 
Singh, 2006; Sun & Firestone, 2021). This metric is meant to capture the cumulative ‘surprisal’ 
of each branch of a skeletal figure; figures with more branches with more twists and turns would 
be more ‘surprising’ and therefore more complex. This measure alone, however, cannot explain 
how a lower “t” differs from a capital “T”, or how a capital “T” differs from a capital “L”. 
Structural surprisal is designed for application to skeletal figures for which the curvature of 
every line matters. Of course, curvature is irrelevant in the world of topology. 

Nevertheless, it should not come as a surprise that topology and complexity are related to 
some extent. Topology is meant to capture relations, after all, and relations can vary in their 
complexity. What we mean to say is not that topology is unrelated to complexity, but rather 
that the ways we would typically operationalize complexity are unlikely to explain the results 
observed here (both in principle and in practice). For instance, the stimuli used in Experiments 
1c, 1d, 2, and 3 vary dramatically in their surface complexity, despite only subtle changes in 
topology. The stimuli used in Experiment 4 were designed to equate most surface features (i.e., 
they use the same number of lines, the lines are equated for length, etc.), and thus should have 
comparable complexity as well. To reduce these results to ‘mere’ differences in complexity 
requires formulations of complexity that largely recapitulate the topological structure (see 
Bonchev & Buck, 2005).  

Topology has also been considered one possible way of capturing the large-scale spatial 
representations that support human navigation (see, e.g., Coutrot et al., 2022; Epstein et al., 
2017). As of yet, however, this has been little more than speculation. There have been no 
detailed investigations into whether or how topological relations for large-scale spaces may be 
represented. Yet there is some prior work in the general field of spatial navigation which 
provides hints at the use of topological representation. For instance, when people are asked to 
recreate mental maps of familiar areas, they are consistently biased to draw turns as if they were 
90-degree angles (even those that differed substantially from 90-degrees; see Byrne, 1979; Moar 
& Bower, 1983). This suggests people represent the presence of an intersection, but not the 
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magnitude of the turn itself — a tendency that makes sense through the lens of network 
topology. 

The present work may then serve as a blueprint, of sorts, to investigate topological 
representations on larger scales. Of particular interest may be how topological forms of 
representation are related to other forms of representation, like coordinate-based formats (see, 
e.g., Yousif, 2022; Yousif & McDougle, 2023; Yousif & Keil, 2021). 

Topology, “core knowledge”, and a “language of thought” 
Core knowledge theory posits that human cognition is founded on a few specific, discrete 
systems (e.g., objects, actions, numbers, and space) which have deep phylogenetic roots (Carey, 
2009; Spelke, 2000; Spelke & Kinzler, 2007). Topology itself may not be a kind of core 
knowledge, but it interestingly cuts across several possible domains of core knowledge, like 
space/geometry (see Dehaene et al., 2006; Izard et al., 2011; Spelke et al., 2010), objects (see 
Baillergeon, 1995; Baillergeon et al., 1985), and even number (see, e.g., He et al., 2015). As 
topology offers a discrete, low-dimensional means of representing how things relate to one 
another, it may be at the heart of how we represent not only spaces and objects, but also social 
networks, institutional structures, and more.  

Perhaps topology offers a sort of “language of thought” (see Fodor, 1975; for a recent review, 
see Quilty-Dunn et al., 2022) for representing relations. While the topological structure 
described here lacks some of the properties we might demand of a true “language of thought” 
(e.g., a subject-predicate structure; for discussion, see Camp, 2009), it has some others. For 
instance, it has compositional semantics: Topological networks are described by (a) what parts 
they contain and (b) how those parts are combined (see Clarke, 2022). Therefore, from few 
building blocks (holes, T-junctions, crosses, etc.) arise an infinite number of geometric/relational 
forms. Thus, “intuitive topology” may be about more than topology itself; it may provide a 
window into the structure of thought more generally. Insofar as we have shown here that people 
are surprisingly sensitive to topological structure (and that people remember and match items 
based on their topology), there is reason to further examine whether this sort of thinking is 
related to relational representation more broadly. 

There has been recent interest in the notion of a “language of thought” for geometric 
representation (see Dehaene et al., 2022; Sablé-Meyer et al., 2021; Sablé-Meyer et al., 2022; see 
also Amalric et al., 2017; Al Roumi et al., 2021). One hypothetical “language” uses repetition, 
concatenation and embedding to generate the sorts of basic shapes that have been observed in 
human cultures for tens of thousands of years (Sablé-Meyer et al., 2022). The promise of this 
research program is obvious: It offers to describe the fundamental units of spatial representation.  

A related controversy is whether there is a pictorial syntax or “grammar” that can be used 
to describe visual images without language (Lande, 2023). This relates to fundamental issues in 
vision science, such as how shapes are perceived constantly across viewpoints and how geometric 
forms are represented (see, e.g., Epstein & Park, 1963; Green, 2023; Slater & Morrison, 1985). 
For example, how do we know that a hand continues to be a hand, even when we view it from 
many different perspectives? This is a question about the format of the underlying 
representation (see Yousif, 2022). One proposal is that the visual system uses “shape skeletons” 
to represent the internal structure of shapes. A substantial body of work demonstrates that the 
visual system is indeed sensitive to the skeletal structure of shapes, in particular the medial axis 
(see, e.g., Ayzenberg et al., 2019; Ayzenberg et al., 2022; Ayzenberg & Lourenco, 2019, 2022; 
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Firestone & Scholl, 2014). Shape skeletons stop short of providing a complete language of forms, 
however. There exists a deeper question: How is the structure of a shape skeleton itself 
represented? Topology — or graph theory more generally – may offer some answers.  

There are, in other words, many pervasive questions about the ‘language’ (or languages; see 
Green, 2023) used to efficiently represent visual information. We suggest that while the network 
topological ‘language’ we target here is unlikely to be sufficient to describe all visual 
information, it may be a part of a suite of syntaxes used by the visual system to represent basic 
visual relations.  

Topology abstracts away from spatial detail like curvature, or jagged lines, and so on 
(structures that feature prominently in the language proposed by Sablé-Meyer and colleagues, 
for instance). Thus, topology is not a replacement for other ‘languages’ that have been proposed. 
Yet the existence of topological maps (see Figure 1D) is a testament to the value of a simplified 
spatial language. Extracting away from metric detail and focusing instead on relations ironically 
improves our ability to process the relevant information. Perhaps topology acts as a sort of 
‘assembly language’ on which other languages build. One could imagine a primitive topological 
representation of a city map, for instance, on which precise details are gradually superimposed.  

As an ‘assembly language’, topology has many virtues: (1) Its parts (holes, T-junctions, 
crosses) are few; (2) Its parts are discrete and clearly defined (i.e., there’s no such thing as a 
large or a small hole; there’s just ‘hole’); (3) It has compositional semantics (such that complex 
entities arise out of simple parts); (4) It is infinitely generative; and (5) it is maximally domain-
general (i.e., it is not just a description of space, it is just as well as description of any relational 
system).  

This is not to say that topological representation in the mind perfectly mirrors topological 
representation in the external world. Just because networks can be described in a topological 
language does not mean that the mind necessarily represents them in this way. What we mean is 
that network topology, construed this way, has features that make it efficient for representing 
complex structures and that, for this reason, the mind may rely on a representational language 
that is similar in nature. Given the way that relational thinking may pervade human cognition 
— the way that topology may act as a sort of relational ‘language’ which is key to several 
domains of ‘core knowledge’ — these questions are worth exploring further.  

If these topological building blocks are a part of a functional language of thought in the 
mind, a natural question arises about the development of this language: To what extent is the 
sort of basic topological thinking intuitive to young children — or even infants? A few studies 
have explored sensitivity to topological properties of objects (e.g., closure, overlap) in infancy 
(Chien et al., 2012; Kibbe & Leslie, 2016) in early childhood (Kenderla, Kim, & Kibbe, 2023) 
and in animal models (Chen et al., 2003), and there is consensus that at least some aspects of 
topology are a vital part of object representation. A question remains about whether and/or 
how the network-like topological relations studied here are related to object topology. 
Investigations of both object and network topology — in adults as well as children — may 
similarly provide clues to the foundations of mental representation. 

Constraints on generality 
These studies were conducted on a diverse sample of adults from the United States. Thus, we 
are not assuming that these findings generalize beyond this group. An open question remains 
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about whether these findings would generalize to individuals without formal training in 
mathematics and geometry (see, e.g., Dehaene et al., 2006). 

Conclusion 
Here, we have shown that people intuitively understand the language of topological networks: 
They readily identify items that differ in their topology from other topology-matched items; they 
match items based on topology rather than surface-level similarity; and they even remember, in 
part, with respect to topological structure. These results speak to a means of relational 
representation that may be foundational not only to spatial representation, but mental 
representation more broadly. This intuitive sense of network topology may be a window to 
understanding the mind’s natural language for representing relations.   
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i We offer the following note about the terminology throughout our paper: We refer primarily to “holes”, “crosses” 
and “T-junctions”. However, these are not the only terms used to describe these structures. What we’ve referred to as 
a “hole” here is sometimes referred to as a “face”. This would be especially true when thinking about surfaces rather 
than nodes occupying empty space. For instance, each of the four visible surfaces of a canonical square pyramid 
may be considered a “face” with three vertices. Similarly, “T-junctions” and “crosses” are really just vertices 
connecting different numbers of edges. The vertex at the apex of a square pyramid is a 4-point vertex (“cross”) and 
the vertices at the base are 3-point vertices (“T-junctions”). Networks can sometimes be described in terms of their 
“degree sequence”, which is just an ordered list of the number of degrees (edges) at each vertex. A square pyramid 
has a degree sequence of 4-3-3-3-3, as there are five vertices, one connecting three edges and four connecting three. 
“Graph invariants”, i.e., networks that are topologically identical, will always have the same degree sequence; 
however, two networks with identical degree sequence will not necessarily be graph invariant. Also, T-junctions are 
sometimes broken down into more detailed shapes like Y-junctions, but this different is not topologically relevant, 
and therefore we refer to all possible 3-point vertices as T-junctions. 


