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Whether it’s choosing a tennis serve or escaping a predator, the ability to behave randomly provides a range of
adaptive benefits. Decades of work explore how people both produce and detect randomness, revealing
profound nonrandom biases and heuristics in our mental representations of randomness. But how is ran-
domness realized in the mind? Do individuals have a “one-size-fits-all” conception of randomness that they
employ across different tasks and time points? Or do they instead use simple context-specific strategies?
Here, we develop a model that reveals individual differences in how humans attempt to generate random
sequences. Then, in three experiments, we reveal that random behavior is stable across both tasks and
time. In Experiment 1, participants generated sequences of random numbers and one-dimensional random
locations. Behavior was remarkably consistent across the two tasks. In Experiment 2, we gave participants
both a random-number-generation and a two-dimensional random-location-generation task, such that the
tasks diverged in structure. We again observed stable individual differences across tasks. Finally, in
Experiment 3, we collected data from the same participants as in Experiment 2, but 1 year later; we found
stable individual differences across that span. Across all experiments, we find idiosyncratic behaviors that
are stable across tasks and time. Thus, we suggest that a trait-like randomness generator exists in the mind.

Public Significance Statement
Understanding random behavior is crucial to understanding the mind. The presence—or absence—of
randomness separates signal from noise, order from disorder, and meaningful patterns from mere
coincidences. But how is randomness realized in themind and implemented in behavior? One idea is that
the mind attempts to generate randomness differently in different settings—that is, that our random
behavior may differ from one task to another or from one day to the next. Another possibility is that
random behavior is more trait-like—that is, that random behavior is stable across tasks and even across
time. In three experiments, we provide evidence for the latter. We suggest that random behaviors may be
realized by a stable individual randomness generator.
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Among the foremost achievements of any cognitive system is
the ability to act in seemingly random ways. A rabbit might ran-
domly weave through a field to evade a fox; a tennis player might
randomly choose their serves to keep their opponent guessing; and
a competitor in a game may choose to behave erratically to deceive
their opponent. Acting randomly aids in survival, learning, play, and

more. It is perhaps surprising, then, that humans exhibit many biases
in tasks that require thinking about or generating randomness. For
example, people judge sequences (e.g., a series of coin flips) with
more “alternations” in states as more random (Kahneman & Tversky,
1972; Figure 1A), people think the past history of a random event
affects its future probability (the “gambler’s fallacy”; Clotfelter &
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Cook, 1993), and so on (Arkes et al., 1988; Gilovich et al., 1985;
Roese&Vohs, 2012). These biases in judgments of randomness seem
to persist across many different tasks and modalities (Sherman et al.,
2022; Yu et al., 2018).
Biases of randomization are not just a quirk of human cognition.

Rather, they may reveal something fundamental about how humans
interact with their environments. Randomness is important for how
we perceive: Detecting the movement and appearance of a snake in a
pattern of foliage may reduce our chance of injury. Randomness is
important for how we learn: Perceiving randomness modulates
learning via simple conditioning (Wagner & Rescorla, 1972), sta-
tistical learning (Saffran et al., 1996, 1999; Turk-Browne et al.,
2005; for review, see Sherman et al., 2020), exploration (Gershman,
2018, 2019; Tomov et al., 2020), and even higher level language
acquisition (Kelly & Martin, 1994). Randomness is important for
how we remember: Statistical regularity improves our memory
(Sherman & Turk-Browne, 2020). And randomness drives how we
act: The ability to act randomly can help prey animals evade pre-
dators (Moore et al., 2017; Szopa-Comley & Ioannou, 2022), tennis
players optimize their choice of serve (Walker&Wooders, 2001), and
soccer players make decisions in penalty shootouts (Misirlisoy &
Haggard, 2014). In this way, unpredictable (i.e., random) behavior is
advantageous and important to any biological system (see, e.g.,
“protean behavior”; Driver & Humphries, 1988).
For this reason, a large body of work has advanced our under-

standing of how—and why—our representations of randomness

may be biased or nonrandom (see Bar-Hillel & Wagenaar, 1991;
Falk &Konold, 1997; Griffiths & Tenenbaum, 2001, 2003; Griffiths
et al., 2018; Kareev, 1992; Rapoport & Budescu, 1992; Warren et
al., 2018). For example, some suggest that biases in randomness
may be a result of a Bayesian inference process over observed data
(Griffiths & Tenenbaum, 2001, 2003); others suggest that such
biases in fact reflect unbiased estimates of our statistical environ-
ments (Warren et al., 2018). Here, we add to this discussion by
asking how randomness is realized in the mind. Specifically, we ask:
Are random behaviors the product of separate, domain-specific
heuristics that change over time? Or instead, might randomness
be realized in a trait-like fashion, such that each person has a
unique “randomness generator” that persists both across tasks and
across time?

We measure human random behavior using randomness gener-
ation tasks in different domains and across different time points
(Figure 1B). Asking people to generate—rather than judge—
random sequences has provided rich insights into how the mind
represents randomness (see A. D. Baddeley, 1966; Treisman &
Faulkner, 1987; Wagenaar, 1972). Indeed, in much the same way
that a rich literature on the perception of randomness has illuminated
several aspects of human randomness (as above), so too has a rich
literature on the generation of randomness illuminated similar and
other questions (see Nickerson, 2002, for a discussion of the two
together). For example, an overalternation bias pervades not only
the perception of randomness but also the generation of randomness,
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Figure 1
Studying Human Randomness

(A)

(B)

Note. (A) Which set of coin flips appears more random? Although both sequences are
equally random, people consistently say that the second is more random than the first. This is
one example of the “over-alternation bias,”whereby people conflate randomness with changes
in state. This can also be expressed in higher level forms than mere repetitions, such as
“jumps” in number, changes in monotonicity, and more. For example, the second sequence of
dice rolls appears more random than the first. (B) We asked participants to generate sequences
of random numbers (using their keyboard) and random locations (either in one or two
dimensions by clicking on boxes with their mouse). The same participants completed these
tasks 1 year later. Thus, our approach leverages large-scale online data collection to find stable
random behavior across tasks and time. See the online article for the color version of
this figure.
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insofar as people have a propensity to not repeat choices (and thus
alternate between options more than would otherwise be expected;
A. Baddeley et al., 1998; Castillo et al., 2024; Cooper, 2016; Feng &
Rutledge, 2024; Rutledge et al., 2009). Along similar lines, when
generating random sequences, people tend to exhaust all available
choices more quickly than would be expected by chance (Ginsburg &
Karpiuk, 1994; Towse & Neil, 1998). Additionally, research on the
generation of randomness has revealed that people can learn to
generate sequences nearly indistinguishable from true randomness
(Neuringer, 1986) and that the ability to generate random sequences
relates to many other cognitive functions, such as working memory
and executive control more broadly (A. Baddeley et al., 1998 ;
Biesaga & Nowak, 2024; Jahanshahi et al., 2006). Thus, studying
randomness generation both provides supporting evidence for
findings in randomness perception and opens the door to new sets
of questions about the function and structure of randomness in
the mind.
More immediately, studying the generation of randomness (rather

than the perception of randomness) allows us to not only infer
general heuristics of human randomization but also extract precise
patterns on an individual level (see, e.g., Schulz et al., 2012). By
asking people to generate sequences in multiple domains, we test
whether human randomization biases persist across tasks (i.e.,
whether a person’s behavior in a random-number-generation task
may look similar to their behavior in a random-location-generation
task). By asking people to generate sequences across lengthy delays,
we test whether these biases persist across time (i.e., whether a
person’s behavior in a random task today will resemble their
behavior in that task—or a different one!—1 year later).
Our computational modeling approach allows us to characterize

domain-general, time-invariant random behaviors on an individual
level. In much the same way that people have consistent extraverted,
risk-averse, or spontaneous behaviors (Poropat, 2009), we suggest
that people have consistent random behaviors.

Method

Participants and Procedure

Participants in all experiments were recruited from the online
platform Prolific (for a discussion of the reliability of this subject
pool, see Peer et al., 2017). Subjects received compensation upon
completing the experiment. The experiments were approved by the
Yale University Institutional Review Board. Experiments 1 and 2
recruited 200 unique subjects each. Experiment 3 invited back all
participants from Experiment 2 1 year later. Eighty-four people
completed Experiment 3.
In Experiment 1, participants completed a random-number-

generation task and a one-dimensional random-location-generation
task back-to-back. The order of these two tasks was randomly
counterbalanced across participants; 100 participants were ran-
domly selected to complete the number-generation task first, and the
other 100 participants completed the location-generation task first.
In each task, subjects generated a sequence of 250 random choices
(in the number-generation task, these were made with their key-
board; in the location-generation task, these were made by clicking
on a box). On each “trial,” participants saw either an empty screen
except for instructions (in the case of the number-generation task) or
a row of nine black boxes (in the case of the location-generation

task) and generated a random choice. The choice appeared on screen
for 750 ms—either via the chosen number flashing on screen or by
the chosen box turning teal—before the choice disappeared. In this
way, participants were generating random sequences with no look
back, as they could not see any previous choices.

Experiment 2 was the same as Experiment 1, except that now
participants completed a two-dimensional location-generation task
instead of a one-dimensional location-generation task. So, instead of
the boxes appearing in a 1-by-9 grid, they now appeared in a 3-by-3
grid. This two-dimensional task differs in representational format
from the number task, allowing us to test the limits of this domain-
generality. Note that participants could not input responses to the
number-generation task with the number pad (and could instead
only do it via the numbers on the top of the keyboard).

Experiment 3 used the exact same design as Experiment 2,
even down to the order of tasks (i.e., if a subject completed the
two-dimensional task in Experiment 2, they completed it first in
Experiment 3, too). Data for Experiment 3 were collected about
1 year after Experiment 2 (an average of about 11 months and
2 weeks later).

Exclusions

Prior to data analysis, we excluded participants who behaved
in clearly nonrandom ways. This is because highly nonrandom
participants are significantly easier to capture with a model. For
instance, a participant who selects each number successively (e.g.,
1–2–3–4–5) will be easily modeled, but such behavior reveals
nothing meaningful about how randomness works in the mind.
Thus, we are excluding participants only to be conservative; we
want to know if we can capture systematicity in the behavior of even
the most random participants in our sample. Note that all our results
hold (and are in fact stronger) if we perform no exclusions (as shown
in our Supplemental Material).

We used two metrics to determine nonrandom behaviors. First,
we excluded any participant who selected any of the nine options
fewer than 10 total times out of 250 trials (i.e., less than 4% of the
time). Second, we computed an average numerical distance for each
participant—the mean absolute difference between consecutive
choices—and excluded participants whose value was below a certain
threshold (2.4 for the number-generation and one-dimensional
location-generation tasks, 1.27 in the two-dimensional location-
generation tasks). Both these exclusion criteria were chosen based
on the fact that discrete uniform distributions do not contain these
properties approximately 99.99% of the time. In other words,
99.99% of truly random sequences (generated by 250 discrete
uniform selections from the numbers 1 to 9) meet these criteria. Note
that the average numerical distance threshold in the number-
generation and one-dimensional location-generation tasks differs
from that of the two-dimensional location-generation tasks due to a
difference in format. In the number and one-dimensional tasks,
average numerical distance is calculated via differences between
consecutive choices—that is, subtracting one choice from the next.
However, in the two-dimensional tasks, average numerical distance
is calculated via Euclidean distance between consecutive choices.
So, for example, the distance from the top-left box (i.e., [1, 1]) to the
bottom-right box ([3, 3]) is 2.83.

We calculated these exclusion criteria for each task in each
experiment. Within an experiment, a participant’s data were
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excluded from both tasks if they failed to meet either criterion in
either task. This is because, in order to test cross-task or cross-time
performance, we wanted equal numbers of participants in both tasks
of each experiment. These exclusion criteria left us with 141 par-
ticipants in Experiment 1 and 142 participants in Experiment 2 (out
of 200 recruited in each). In Experiment 3, we excluded participants
who failed to meet either criterion in either task or in either time of
measurement (i.e., either Experiment 3 or Experiment 2, such that,
again, we had equal numbers of participants for each comparison).
This excluded 31 of 84 total participants, leaving 53 total.

Emergent Properties

Throughout our analyses, we rely on a set of emergent properties
(what some might call “sequence features”) that capture high-level
features of random sequences. The first emergent property we
examined was the number of repeats—the number of times a subject
contributes the same choice two trials in a row. The second was
average numerical distance; as above, this is defined as the mean
of the difference between consecutive choices in the number-
generation and one-dimensional location-generation tasks and as the
mean of the Euclidean distance between consecutive choices in the
two-dimensional location-generation task. The final property was
direction switches; this is defined as the number of times the
sequence changes in monotonicity. For example, the sequence
“1-5-7-2-4” contains two direction switches: one from 7 to 2 (as,
prior to choosing 2, the sequence was increasing from 5 to 7) and
one from 2 to 4 (as, prior to choosing 4, the sequence was decreasing
from 7 to 2). However, this instantiation of direction switches
holds only for the number-generation and one-dimensional location-
generation tasks, where sequences vary only in one dimension.
In the two-dimensional location-generation task, we defined direction

switches in an angular way that generalizes across dimensions. To
account for the angular movement in a two-dimensional grid while
keeping the same principles, we defined a direction switch as a
movement to any box that lies on the same side of the normal vector
formed by the previous two choices. In other words, we first calculated
the angle formed by ct − 1 and ct (i.e., atan(ct − 1) − ct), where ct is the
choice made on trial t (and ct − 1 is the choice made on trial t− 1). Then,
we considered each possible next-choice ct + 1 as being in the same
“direction” if it was on the opposite side of the normal vector
formed by these two choices; so, ct + 1 is not a direction switch if
−90 ≤ atan (ct − 1 − ct) − atan(ct − ct + 1) ≤ 90. This definition
maps onto the number and one-dimensional tasks; consider the
points in these tasks as changing only in x, with y being constant.
Choices increasing in x (i.e., increasing from 1 to 9) all have an
“angle” of 0, and thus, monotonic increases have a difference of
0 between consecutive choices (implying no direction switch).
However, if a choice flips a sequence from increasing to
decreasing, then the “angle” is 180 degrees, resulting in a
direction switch using the above definition. Additionally, note
that choices on the normal vector itself are not direction switches
in this definition; for example, the sequence “1-5-7” on a keypad
(i.e., two-dimensional grid) does not count as a direction switch.

Modeling

We fit our models with a nonlinear program solver from the
MATLAB optimization toolbox. We fit a model to each participant

in each task, allowing us to compare parameters and predictions
across tasks (and across time).

In each task, we “fit” a Markov chain, in other words extracting
participant transition probabilities from each individual sequence,
to use as a baseline model. Let S be the space of possible choices in
the task, ct be the chosen value on trial t, and P(S)t + 1 be the
probability distribution over the sample space for the next trial.
Thus, P(ct, S) is the transition probability from choice ct to any
possible choice in S. The Markov chain is exactly this; in other
words, the Markov chain’s prediction for the next choice is defined
as M : P (S)t + 1 = P(ct, S).

We compared the Markov chain to our own model. Our model for
the number-generation and one-dimensional location-generation
tasks had three parameters: a stay parameter, a side-switch parameter,
and a direction-switch parameter. Each parameter was bounded
(−1, 1). These parameters are all built on top of a naive random
model with no prior assumptions about transition probabilities; in
other words, these models adjust choice likelihood from a uniform
distribution over possible choices. Thus, each model starts
withM∶PðSÞt+ 1 = UðSÞ = 1

9 , as all nine choices are equally likely.
After all parameters were added, we applied a softmax function to
the result, giving us probabilities summing to 1.

The stay parameter, α, adjusts the probability of the number that
was just chosen (i.e., it makes a repeat either more or less likely). So,
this means thatPðS = ctÞt+1 = 1

9 + α. For most participants, the stay
parameter was at its lower bound, meaning that most participants
very rarely repeated choices.

The side-switch parameter, β, adjusts the probability of the set of
numbers on the opposite “side” of the sequence from what was just
chosen. The set of numbers 1–9 has two sides: 1–4 and 6–9 (as does
a row of nine boxes). This parameter was subtracted from the
probability of choosing a number on the same side as the previous
choice and added to the probability of choosing a number on the
opposite side. Note, however, that the parameter β ∈ [−1, 1],
meaning that the parameter could actually increase the probability
of staying on the same side (and reduce the probability of switching
sides) if it was negative. A mathematical operationalization of the
side-switch parameter is P(S < 5 | ct < 5)t + 1 = P(S < 5 | ct < 5) − β
and P(S > 5 | ct < 5)t + 1 = P(S > 5 | ct < 5) + β (and vice versa for
choices on the other side, i.e., ct > 5).

In the two-dimensional case, the side-switch parameter is defined
in a way that accounts for the structure of the task: A side switch in
our 3-by-3 grid is a movement to any choice that is not adjacent to
the previously chosen box. This preserves all the features of side
switches in the number and one-dimensional case. Specifically, from
the center point of the grid, nothing is a side switch; similarly, from
the number 5 (or the fifth box in the row), nothing is a side switch.
Additionally, this definition ensures that a side switch occurs in at
least one dimension of the grid. For example, suppose we are
considering what is a side switch from the top-left box. Across the
rows of the grid, it is certainly a side switch to jump from the first
row to the third, regardless of the column chosen, but so too across
the columns of the grid it is a side switch to go from the first column
to the third, regardless of the row chosen. This operationalization
considers both cases as side switches.

These parameters were added into the model in the order that they
are presented here; first, we adjusted the probability of the previous
choices; then, we adjusted the probability of both sides of the
sequence before adding a final direction-switch parameter. This
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parameter, γ, works in much the same way as the side-switch
parameter, but accounts for direction instead. It is added to choices
that imply a direction switch from the previous choice and sub-
tracted from choices that do not imply a direction switch from
the previous choice. So, P(S > ct | ct < ct − 1)t+1 = P(S > ct) + γ and
P(S < ct | ct < ct − 1)t + 1 = P(S < ct) − γ (and vice versa for the
opposite direction, where ct > ct − 1).
As mentioned above, operationalizing direction switches in two

dimensions is computationally complex. Adding it to our model
squashed the other parameters and affected the results negatively.
Thus, our model in the two-dimensional tasks does not include this
parameter.
Putting together all our definitions in the order that our model

computes them, we have the following:

M∶PðSÞt+ 1 = UðSÞ = 1
9
, (1)

PðS = ctÞt+1 = 1
9
+ α, (2)

PðS < 5jct < 5Þt+1 = PðS < 5Þ − β ðand vice versaÞ, (3)

PðS > ctjct < ct− 1Þt+1 = PðS > ctÞ + γ ðand vice versaÞ: (4)

After these computations, we transformed the outputs into a
probability distribution that summed to 1 using softmax. All model
simulation results reported in the article are performed by generating
these probability distributions on each “trial” and then sampling the
distribution several times, resulting in several different model-
generated sequences for each participant.

Transparency and Openness

Readers can experience all of our experiments—exactly as they
were presented to participants—at https://perceptionstudies.github
.io/randomness/. All data, experiment scripts, models, and more are
publicly available at https://osf.io/ebycj/.
Note that our modeling choices and experiments were not pre-

registered. This is because we were open to a variety of possibilities
and outcomes before collecting data and thus did not want to commit
to a specific model or approach. We are indeed open to the possibility
that other models may outperform ours (e.g., Angelike & Musch,
2024; Castillo et al., 2024); our model aims to demonstrate stability
across tasks and time. Furthermore, we take considerable steps to
check that our model is not overfitting and ensure that our results hold
regardless of exclusion criteria (see Supplemental Material).

Results

Experiment 1: Consistent Behavior in Random-Number-
Generation and Random-Location-Generation Tasks

In Experiment 1, subjects (N = 142 after exclusions, see the
Method section) generated a sequence of 250 random numbers
(using their keyboard) and 250 random locations (using their mouse
to click on one box in a row of nine; Figure 2A). The order of
these two tasks was randomly counterbalanced across partici-
pants. Although such a task may seem artificial (as people are
rarely asked to generate sequences of random numbers or lo-
cations in their everyday lives), this approach has been useful in

revealing the basic tendencies of human random behavior (see,
e.g., Kahneman & Tversky, 1972). This approach is fruitful in
part because people behave systematically even when they think
they are behaving unpredictably. Our paradigm exploits that fact.
We collected a rich, cross-domain data set of random sequences.
Each subject contributed 250-item-long sequences of both ran-
dom numbers and random locations. We asked: Do subjects’
sequences in these two tasks share behavioral signatures?

We excluded subjects who contributed substantially nonrandom
sequences (e.g., a sequence of the same number each time; criteria
are described in detail in our Method section). Note that this stacks
the deck against our predictions, as people who behave non-
randomly are easier to predict and thus may display even more
systematic behavior across tasks. Our conclusions do not change
when running all our analyses on data without any exclusions; see
Supplemental Material. Then, we examined several emergent
properties (i.e., what some might refer to as “sequence features”) of
the sequences generated by subjects. Specifically, we computed the
number of repeats (i.e., the total number of times that a participant
selected the same option multiple times successively), the average
numerical distance (i.e., the average distance between consecutive
choices), and the number of direction switches (i.e., the total number
of times the sequence switches from consecutively ascending
numbers to descending numbers, or vice versa) for each sequence.
Similar properties have been used as metrics of success in previous
works examining randomness generation (see Castillo et al., 2024;
Towse & Neil, 1998).

Each participant contributed two sequences—one from each
task—allowing us to conduct model-free analyses asking whether
subjects behaved similarly across the two tasks (Figure 2B). We
observed strong cross-task correlations for each of our three
emergent properties: On the subject level, the number of repeats,
r(140) = 0.42, p < .001; average numerical distance, r(140) = 0.54,
p < .001; and the number of direction switches, r(140) = 0.38, p <
.001, were all correlated across tasks.

We also analyzed other features of these sequences, like their
“redundancy” (i.e., the uniformity of each response alternative, as in
Towse & Neil, 1998). Interestingly, we found no correlation in
redundancy across these two tasks, r(140) = 0.10, p = .23. The
absence of a significant correlation here suggests that the consis-
tency we observe for the above properties reflects something deep
about the sequence-generation process and is unlikely to be ex-
plained by some other domain-general factor such as effort.

To further probe subtle individual differences in random gen-
eration, we developed a descriptive model for each participant’s
sequence in each task. This model was fit with maximum likelihood
estimation (implemented via a nonlinear program solver from the
MATLAB optimization toolbox; see the Method Section). The
model contains only three parameters: (a) a stay parameter (which
captures the participant’s propensity to repeat choices), (b) a side-
switch parameter (which captures the participant’s propensity to
switch “sides” in the response space), and (c) a direction-switch
parameter (which captures the participant’s propensity to switch
“directions” in the response space). Note that these parameters are
quite general and can be applied to nearly any one-dimensional
space (and we later show how this is true in two dimensions too).We
compare our model to a Markov chain that predicts a participant’s
next choice using their transition probabilities between choices in
each sequence (see Supplemental Material for discussion of an
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additional, second-order Markov baseline). Our model is described
in full detail—including parameter definitions and derivations—in
the Method section, and all data and code are available in our Open
Science Framework repository (https://osf.io/ebycj/).
Our model captured individual differences in randomness gen-

eration (Figure 2C): Each of the three parameters was significantly
correlated across tasks, suggesting consistent domain-general
behavior on the individual level, stay parameter: r(140) = 0.28,
p < .001; side-switch parameter: r(140) = 0.45, p < .001; direction-
switch parameter: r(140) = 0.33, p < .001. Note that our model
builds on (and replicates) classic biases in human randomness, such
as the overalternation bias (A. Baddeley et al., 1998; Castillo et al.,
2024; Cooper, 2016; Kahneman & Tversky, 1972; Walker &
Wooders, 2001). Specifically, the stay parameter—which adjusts
the likelihood of repeating the previous choice—was at (or near) its
lower bound for almost every subject (median stay parameter was
below −0.9, with the lower bound being −1), indicating that
subjects rarely repeated choices.
To further evaluate the performance of our model, we used each

participant’s parameters to simulate 100 new sequences. Then, we

also simulated 100 sequences for each participant using just their
transition probabilities (i.e., the Markov chain baseline). For each of
these 100 simulations, we computed the average numerical distance
and number of direction switches for each subject’s simulated
sequence and asked whether our model had a higher correlation with
the true average numerical distance and direction switches (i.e., from
the participant’s real sequence) than the Markov chain baseline. In
other words, for each simulation, we computed two correlations
across participants—one between our model-generated sequence
and the data and one between the Markov chain baseline–generated
sequence and the data—and asked which correlation was higher. We
expected that our model would outperform theMarkov chain baseline
in most simulations if it is in fact capturing meaningful variation in
random behavior. And that is what we observed: Our model out-
performed the Markov chain in terms of both average numerical
distances and direction switches in every simulation we conducted.

We next measured performance more directly by asking: How
often does the model-generated sequence correctly predict an in-
dividual’s actual choices? In other words, given a participant’s last
two responses (a window long enough to instantiate our parameters),
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Figure 2
Stable Random Behavior Across a Number-Generation and One-Dimensional Location-Generation Task

(A)

(C) (D)

(B)

Note. (A) Subjects generated two random sequences: one of random numbers (by pressing number on their keyboard) and one of random locations (by
clicking on boxes a row of boxes with their mouse; the order in which subjects completed the two tasks was randomly counterbalanced across subjects).
(B) Emergent properties of the sequences for each subject. All three properties—number of repeats, average numerical distance, and number of direction
switches—were significantly correlated across tasks. (C)Model parameters for each subject. Note that each parameter was significantly correlated across tasks,
suggesting domain-general random behavior. (D) Model accuracy for predicting the next item in the sequence. Our models successfully predicted subject
behavior both within tasks (i.e., using the model fit to number-generation to predict data in the number-generation task; 41.8% in the number-generation task
and 43.7% in the location-generation task) and across tasks (i.e., when using the model fit to location-generation to predict data in the number-generation task, we
observe 38.2% Top 3 accuracy, and the opposite yields 37.8% accuracy). Note that bars are labeled by the model used; so in the across-tasks graph, the “number”
bar denotes the performance of the number-generation model in predicting location-generation data. See the online article for the color version of this figure.
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does our model successfully predict the next response? In principle,
it is possible that our models successfully describe emergent
properties of the data, but fail to predict specific values.
When comparing model-generated sequences from the random-

number-generation model to the true random-number-generation
sequences, we found that the true choice was among the Top 3 most-
likely model predictions 41.8% of the time (p < .001 in the
Wilcoxon signed-rank test compared to fits to 100 shuffles of the
participant’s data, which yielded an average accuracy of 33.8%;
Figure 2C). In the one-dimensional random-location-generation
task, the model achieved 43.7% Top 3 accuracy (p< .001 compared
to 33.2% average accuracy for fits to 100 shuffles). These results
suggest that the model can predict individual response choices
beyond just summary biases.
Most importantly, the models also made accurate response-

specific predictions across tasks. We asked whether these results
reflected patterns that are not just applicable to any participant, but
rather specific and unique to each individual by comparing the
model’s accuracy for each participant to what would be predicted by
using the parameters from every other participant—in other words,
a leave-one-out prediction accuracy. The model fit to the location-
generation task predicted a participant’s data in the number-
generation task with 38.2% Top 3 accuracy (p < .001 compared
to 34.0% in the leave-one-out baseline). Further, the number-
generation model predicted the location-generation data with
37.8% accuracy (p < .05 compared to 36.4% based on leave one
out). Thus, our model successfully predicts variance in specific
choices both within and across tasks on an individual level.
Collectively, these results suggest that (a) aspects of human

randomization are correlated across tasks, (b) our model captures
meaningful variation in human randomization, and (c) cross-task
similarities are explained by individual idiosyncrasies and not just
group-level heuristics.

Experiment 2: Consistent Behavior in Tasks With
Different Surface-Level Features

Although Experiment 1 revealed cross-task similarities, one might
argue that the two tasks share an underlying representational format
(i.e., a straight line in space), providing a simple explanation for the
observed similarities (i.e., without invoking a stable randomness
generation). After all, human adults are known to represent numbers
spatially via amental number line (Dehaene et al., 1993). In Experiment
2 (N = 143 after exclusions), we tested this domain-generality by
replacing the one-dimensional random-location-generation task
with a two-dimensional random-location-generation task.
The benefit of the two-dimensional approach is that, although it is

still fundamentally a spatial randomization task, the format of this
task differs from that of the number task. Rather than being arranged
in a straight line, the cells in this experiment were organized in a
3-by-3 grid (Figure 3A). Mappings of the numbers 1–9 onto a 3-by-3
grid are substantially weaker than a typical mental number line
(Darling et al., 2017; Darling & Havelka, 2010). Note that one can
map the numbers 1–9 onto a 3-by-3 grid via the number pad of a
keyboard. However, in our experiments, we disabled the number pad,
such that participants could generate random numbers only by using
the top row of their keyboards, where the numbers are arranged in a

straight line. Thus, observing similarities across the two tasks would
further support the idea that random behavior is domain-general.

As in Experiment 1, we first examined model-free correlations in
emergent properties across the two tasks. Again, we found strong
cross-task correlations in each of the properties: number of repeats,
r(141) = 0.51, p < .001, Figure 3B; average numerical distance,
r(141) = 0.44, p < .001; and number of direction switches, r(141) =
0.32, p < .001. The cross-task correlation for side switches
and direction switches is especially striking given that they are
instantiated for one dimension (i.e., for the number-generation
task) differently from how they are instantiated for two dimen-
sions (i.e., in polar space for the two-dimensional location-
generation task; both definitions are described in the Method
section). Note that because of this difference in instantiation, our
final model of the two-dimensional data does not include a
direction-switch parameter.

Subject-specific parameters were correlated across the two tasks:
stay parameter, r(141) = 0.48, p < .001; side-switch parameter,
r(141)= 0.41, p< .001; Figure 3C. Furthermore, even with only two
parameters, our model again outperformed the Markov chain in
generating simulated data for each participant: As in Experiment 1,
our model outperformed the Markov chain baseline in both
emergent properties and both tasks for all 100 simulations. Despite
the fundamental differences between a random-number-generation
and a two-dimensional random-location-generator task, participants
behaved similarly across the two tasks.

As before, we tested the accuracy of our models both within and
across tasks. Observing cross-task predictiveness would be espe-
cially surprising, as the parameters are instantiated differently across
the two tasks. However, we again observed consistently strong
cross-task model accuracy (Figure 3D): The number-generation
model predicted the correct value in its Top 3 most-probable values
41.9% of the time (p < .001 compared to 33.6% average accuracy
for fits to 100 shuffles), and the two-dimensional location-
generation model predicted the Top 3 value 41.7% of the time (p <
.001 compared to 33.2% average accuracy for fits to 100 shuffles).
Furthermore, the model fit to the two-dimensional location data
predicted the number-generation data with 36.8% Top 3 accuracy
(p < .001 compared to 33.2% leave-one-out accuracy), and the
model fit to the number-generation data predicted the two-
dimensional location data with 36.0% Top 3 accuracy (p < .05
compared to 38.3% leave-one-out accuracy). The high baseline
accuracy in this latter case suggests that 2D location data are well-
described by group-level heuristics.

Together, these results suggest that individual patterns of ran-
domization are stable across tasks even when the tasks differ
substantially in their representational format and features.

Experiment 3: Consistent Behavior Over Time

If random choice behavior truly is trait-like, perhaps the most
straightforward feature we should expect to find is stability over
time—much like how some personality traits are stable over time.
Here, we asked whether we could predict a subject’s performance on
our tasks 1 year after they completed the original task. This experiment
also controls for potential confounds related to collecting data from
multiple tasks on the same day; if a stable randomness generator exists
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on an individual level, then a subject’s random behavior should
contain similar patterns at any time at which it is measured.
To test this, in Experiment 3, we collected longitudinal data

from the same participants that completed Experiment 2; these
participants (N = 53 after exclusions) generated new sequences
of random numbers and two-dimensional random locations
approximately 1 year after the initial study (mean of 50 weeks
later; Figure 4A).
Remarkably, a participant’s sequence generated at thefirst time point

shared features with the sequence they generated 1 year later. This was
true of all three emergent properties in both the number-generation
task: number of repeats: r(51) = 0.42, p < .01; average numerical
distance: r(51) = 0.56, p < .001; number of direction switches:
r(51)= 0.51, p< .001; and the two-dimensional location-generation

task: number of repeats: r(51) = 0.42, p < .01; average numerical
distance: r(51) = 0.57, p < .001; number of direction switches:
r(51) = 0.61, p < .001; Figure 4B.

Subject-specific parameters in our model were also correlated
over time, both in the number-generation task: stay parameter:
r(51) = 0.33, p = .01; side-switch parameter: r(51) = 0.66, p <
.001; direction-switch parameter: r(51)= 0.48, p< .001; and in the
location-generation task: stay parameter: r(51) = 0.38, p < .01;
side-switch parameter: r(51) = 0.65, p < .001; Figure 4C.

Next, as a stronger test of stability across time, we compared our
model’s simulated data for each task based on model parameters
from 1 year earlier to a Markov chain’s simulated data based on the
more recently collected data. Participant data matched our model’s
predictions based on parameters from year-old data more closely
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Figure 3
Stable Randomness in Tasks With Different Surface-Level Features

(A)

(C) (D)

(B)

Note. (A) Subjects generated two sequences of random numbers: As before, one was generated by pressing random numbers on the keyboard.
The other was generated by clicking on random locations with the mouse in a two-dimensional grid. The task was designed such that the
representational format differs between the two tasks (unlike in Experiment 1, where one-dimensional grids could be represented as number lines).
(B) Emergent properties were correlated on the individual level. (C) Model parameters for each subject. Unlike in Experiment 1, there was no
direction-switch parameter here due to its different instantiation in two dimensions. The other two parameters were significantly correlated across
tasks. (D) Model accuracy for predicting the next item in the sequence. As before, the model successfully predicted subject behavior at rates above
chance within tasks (41.9% for number-generation, 41.7% for two-dimensional location-generation). We also found evidence for cross-task
predictive power (36.8% for two-dimensional location-generation model predicting number-generation data, and 36.0% for the opposite). See the
online article for the color version of this figure.
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than the current Markov chain in both the number-generation task
(where our model outperformed the Markov chain in 66/100 si-
mulations in terms of average numerical distance and in 99/100
simulations in terms of direction switches) and the two-dimensional
location-generation task (where our model outperformed the
Markov chain in 99/100 simulations in terms of average numerical
distance and 93/100 simulations in terms of direction switches).
Despite the above correlations, a subject’s current data may

contain subtle, choice-level differences that significantly deviate
from their initial data. However, this is not what we observed: Our
model, when fit to each subject’s initial time point data, successfully
predicted variance in their next choice 1 year later in both the
number-generation task (37.9%, p < .05 compared to 36.4% leave-
one-out accuracy) and the location-generation task (38.8%, p < .05
compared to 35.2% leave-one-out accuracy; Figure 4D). We
also examined performance across both tasks and across time,
simultaneously. Using subject-specific parameters from the initial
number-generation task to predict data in the location-generation
task 1 year later yielded 36.1% accuracy; and using the initial
location-generation model to predict current number-generation
data resulted in 36.6% accuracy. However, neither significantly
outperformed the leave-one-out baseline (p = .18 using number-
generation parameters for predicting location-generation data 1 year

later, p = .77 using location-generation parameters for predicting
number-generation data 1 year later).

Recall that this task involves generating sequences that are as
random as possible; the “right” way to do these tasks is to be
unpredictable. Yet, not only can we reliably predict an individual’s
behavior; we can do so across tasks and over the span of one full
year. This suggests that random behavior is highly idiosyncratic and
perhaps trait-like.

Discussion

The ability to perceive and generate randomness is a core part of
cognition. How we perceive randomness influences how we read
financial information, how we understand weather forecasts, and
more. Similarly, our ability to act randomly may be vital in a range
of game-theoretic scenarios (e.g., if you have an upper hand on your
opponent, you may still wish to behave in such a way that does not
reveal your enhanced knowledge; see Mazor et al., 2024). Here, we
show not only that humans exhibit the same characteristic biases
when trying to act randomly in a variety of settings, but also that an
individual’s specific random behaviors are consistent across tasks
and across time. We demonstrate this through a model that captures
subject-specific behavioral patterns in different domains (i.e.,
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Figure 4
Predicting Random Behavior, 1 Year Later

(A)

(C) (D)

(B)

Note. (A) One year after finishing data collection for Experiment 2, we invited the same subjects to generate two new random sequences (one of numbers and
one of two-dimensional locations). This allowed us to compare each subject’s sequence to themselves 1 year later in Experiment 3. (B) All emergent properties
were highly correlated when comparing a subject’s data to their new sequence, collected 1 year later. (C) Model parameters for each subject over time. Notice
how highly correlated the side-switch parameter is. Note that the modest correlation in the stay parameter is partly due to the parameter values being so
consistent that many participants had the minimum parameter value (−1) when we fit the model to their data from both Experiment 2 and Experiment 3.
(D) Model accuracy over tasks and time. The model accurately predicted choices within a given task over time (left; “within-tasks”; 37.9% for number-
generation, 38.8% for location-generation). The model even predicted choices across both task and time together (right, “across-tasks”; 36.1% for old
number-generation data predicting new two-dimensional location-generation data, and 36.6% for the opposite), although it does not significantly
outperform the leave-one-out baseline. See the online article for the color version of this figure.
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number vs. one- and two-dimensional space) and at different time
points (i.e., the span of a year). This focus on individual char-
acteristics of random generation presents a shift from how random
behavior is classically studied (i.e., on the group level).
In light of our findings, we speculate that there exists a trait-like

“randomness generator” in the mind. Even though each person’s
so-called generator may exhibit the same overall tendencies (e.g.,
well-known biases like an overemphasis on state alternations;
Kahneman & Tversky, 1972), each one may be tuned in slightly
different ways (for instance, because of a unique “diet” of sta-
tistical information or a different internal model of what “random”

means). Along these lines, we suggest that many classic works on
randomness that demonstrate group-level departures from true
random behavior may have meaningful individual-level coun-
terparts. For example, Bar-Hillel and Wagenaar (1991), Griffiths
and Tenenbaum (2003), and Griffiths et al. (2018) each analyzed
features of “subjective” randomness in the mind. While these
works provide much insight into human randomness, they analyze
group-level heuristics; thus, “subjective” is taken to mean “non-
objective.” Here, our approach advances the notion of “subjective”
proposed in these works by demonstrating that randomness may be
instantiated in the mind in a truly unique fashion for each person
(i.e., “subjective” as “individual”). In practice, perhaps this means
that we should think about one’s ability to generate randomness in
the way that we think about other cognitive or emotional traits—that
is, as individual differences that persist across time in tractable ways.
This perspective opens the door to many novel questions. Insofar

as random behavior is trait-like, what other trait-like capacities
might it be related to? Might random behavior predict more general
cognitive capacities—like how executive function or numerical
acuity (Halberda et al., 2008), for instance, do? Although random
behaviors have been shown to relate to executive function (A.
Baddeley et al., 1998; Jahanshahi et al., 2006), we suggest that this
relationship may extend beyond mere “performance”: Two in-
dividuals who “perform” equally well in our task may still have
distinct patterns of responses that our model can detect and differ-
entiate. Thus, our model is most likely capturing more than general
differences in executive function (though this is nevertheless an
interesting avenue for future work). Additionally, given the impor-
tance of randomness to behavior, one might wonder how early in
development this putative randomness generator arises (see Towse &
Mclachlan, 1999), how its development tracks (if at all) with the
development of other cognitive abilities (like number acuity), and
whether it remains stable throughout the lifespan (Gauvrit et al.,
2017). Furthermore, might nonhuman animal minds contain a similar
sort of generator (Lee et al., 2004), and, if so, can that behavior be
modeled using the same sorts of parameters used here? What are the
neural correlates of these processes, and might they reveal further
features of an individual’s randomness generator (Jahanshahi &
Dirnberger, 1998; Jahanshahi et al., 1998)? Finally, randomness
generation and randomness perception often show similar cognitive
signatures (Nickerson, 2002). But do they in fact rely on the same
underlying process? If so, might a trait-like “randomness perceiver”
exist in ways similar to the trait-like “randomness generator” we
find here?
The simple model presented here is not perfect; we are open

to the idea that other variants of our model or other kinds of
models altogether may better predict random behavior, perhaps by
including additional (or different) parameters. What we wish to

emphasize here is that a simple model combining insights from
past research (e.g., tendencies to repeat, exhaust choices, etc., as in
Castillo et al., 2024; Towse & Neil, 1998) is able to predict
behavior across tasks and time. It is striking, in our view, that our
ability to predict behavior across tasks is almost as good as our
ability to predict behavior within tasks. This is a strong indication
that random behavior can be explained by an individual trait-like
generator, rather than task-, context-, or domain-specific generators.
Still, any future improvements to our model would enhance our
ability to understand subtle differences in individual behavior and
the psychological mechanisms that give rise to these differences.

What Does It Mean That Randomness Is Stable Over
(Long Periods of) Time?

Previous work has hinted at the idea that random behavior might
be stable across tasks (Castillo et al., 2024; Yu et al., 2018). Recent
work has even extended this to show that it applies to nonuniform or
recently learned distributions (Castillo et al., 2024). More generally,
one may expect random behavior to be consistent across tasks
insofar as it relates to statistical understanding—which children
exhibit early in development (Xu & Garcia, 2008). However, such
works have emphasized stability on the group level (e.g., that re-
petitions are consistent in different modalities), rather than on the
individual level. Thus, our approach here adds critical evidence to
the idea that random behaviors may be realized by an individual
random generator. Furthermore, previous work has not, to our
knowledge, tested stability in random behavior over time, as we
have here. Thus, our work builds on previous work that hints at such
possibilities, and explores these new questions with a novel
computational model fit to a unique data set.

But what are the implications of this stability in random behavior
across time? Many different explanations can be provided as to how
andwhy randombehavior turns out to be stable. One possibility is that
human randomness is in fact realized like a biased version of a
computer’s pseudorandom generator, with slightly different algo-
rithms for each individual. Another possibility is that random be-
haviors draw on mechanisms for other stable processes in the mind
that are not unique random behaviors. Under this view, random
behaviors would be stable, though not necessarily because of a
random generator. Rather, they would come to be stable because
another part of the mind contributes to random behavior (e.g., in-
tuitions about probability or numerical cognition, executive function
ability; A. D. Baddeley, 1966; A. Baddeley et al., 1998). Showing that
random behavior indeed stays consistent across time opens many
questions along these lines, and answering these questions will
ultimately help illuminate how randomness is realized in the mind.

Constraints on Generality

Participants for this study were recruited via the online platform
Prolific; thus, we obtained a diverse sample of U.S. adults. We do
not assume these findings generalize beyond this group.

One additional consideration is whether (or to what extent) the
patterns of randomness observed here reflect biases of random
behavior itself as opposed to misconceptions of what it means to be
random. For instance, we take “random” to mean “unpredictable,”
but perhaps participants take “random” to mean “uniform.” Had we
run a slightly different version of the task in which participants were
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incentivized to be unpredictable, we may have observed different
biases. Note that similar biases seem to arise in strategic games that
do not rely on a definition of randomness, e.g., rock-paper-scissors;
Batzilis et al., 2019. However, various strategic considerations
might lead to more or less random behavior, in the case of mimicry,
e.g., Baker & Rachlin, 2001; Belot et al., 2013. This strikes us as a
valuable question for future work. The modeling approach taken
here offers a method for comparing subtle individual differences in
random behavior and allows such work to test whether changes in
information that individuals have might lead to systematic changes
in model parameters.
Additionally, themodel here could surely be improved. For example,

models with a “cycling parameter,” which captures the increasing
likelihood of selecting an option based on how long ago it was last
selected, may prove more accurate (and more generalizable) for these
tasks (see Angelike & Musch, 2024). As it stands, the current work
serves as an existence proof that there are stable individual differences
in random behavior that can be modeled across tasks and time.

Conclusion

People’s ability to perceive and generate random sequences
reveals deep insights into human cognition. Here, using a simple
computational model, we demonstrate that highly idiosyncratic
aspects of human randomization are consistent across tasks and
across time, suggesting that a stable, trait-like random generator
might exist in the mind. This work opens the door to a wide range of
new questions about the nature of this random generator in the mind.
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